
IDTIC

ELECTE

DECIL5.1I9 U

AUTONOMOUS FACE RECOGNITION MACHINE

USING A FOURIER FEATURE SET

THESIS

Barbara C. Robb, B.S.
Captain, USAF

AFIT/GE/ENG/89D-44

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY .

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
--DSIIBUTION S'fATEZ A

Appro'vod for public r89alQ 12 14
Diniibtoe UnUmUted O f 4

AFIT/GE/ENG/89D-44

AUTONOMOUS FACE RECOGNITION MACHINE

USING A FOURIER FEATURE SET

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Barbara C. Robb, B.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgements

To my husband Roger. You were brave to marry an AFIT

student, and your love and encouragement kept me going.

Thank you.

To my advisor, Dr. Matthew Kabrisky. Thank you for your

unending patience and constant enthusiasm. Never has

learning been so much fun.

Thank you to the other members of my committee, Major

Steven Rogers and Dr. Frank Brown, for your comments and

support.

Thank you Dan Zambon for your support in the lab. You

werf ,lways there to help me learn the systems and use the

lab to do my research.

A special thanks to my fellow students and other

individuals at AFIT for letting me take your pictures so I

could gather all of the faces I needed for my data base.

Aooeslon For '0

HTIS GW.A&I e
DTIC TAB 0
Urninounood 0
Justifieatio,

By

Distribution/

Availability Oodes
Avail and/or

Dist Special.

Table of Contents

Page

Acknowledgements ii

List of Figures v

List of Tables vi

Abstract vii

I. Introduction

General Issue 1
Background 1

Routh's Theory 1
Russel's AFRM 1
Smith's Improvements 4
Lambert's Enhancements 4
Sander's Further Enhancements 8

Problem Statement 10
Research Objectives/Methodology 10
Assumptionsi.i. 11
Standards 12
Scope/Limitations 12
Equipment 13
Support 13
Summary 13

II. Methodology 15

Introduction 15
Feature Set. 16

Justification of Method Selected . . . 16
Research Methodology 17

Increasing Data Base Size 20
Multiple Looks 20
Documentation 21

Justification of Method Selected . . . 21
Research Methodology 22

Summary 24

III. Implementation 25

Introduction 25
Feature Set 25
Increasing Data Base Size 26
Multiple Looks 26
Documentation 26
Summary 27

iii

i7

IV. Results 28

Introduction 28
Feature Set 28

Sander's Results 28
Retest of Sander Data 30
Test of Modified FACEDFT 30
Face Location Problems 37
Test of FACEFT 37

rncreasing Data Base Size 40
Multiple Looks 41
Documentation 42
Summary 42

V. Conclusions 43

Introduction 43
Feature Set 43
Increasing Data Base Size 44
Multiple Looks 44
Documentation 45
Summary 45
Recommendations for Further Research . . 45

Appendix A: User's Manual.......... 47

Appendix B: Program Changes 64

Appendix C: Software Documentation 69

Appendix D: FACEDFT Source Listing 88

Appendix E: FACEFT 132

Bibliography . .. p. 138

Vita 140

iv

List of Ficures

Figure Pa1ge

1. Russells Image Processing 3

2. Smith's Image Processing. 5

3. Lambert's Image Processing. 6

4. Sander's Image Processing 9

V

List of Table

Table Page

1. Comparison of FACE and FACEDFT 29

2. Comparison of FACEDFT and Individual
Windows 31

3. Changed FACEDFT 32

4. Tabulated Results 35

5. FACEFT . 38

vi

AFIT/GE/EIIG/89D-44

Abstract

'>This thesis demonstrates Fourier coefficients as a

reliable feature set for face recognition, using the

Autonomous Face Recognition Machine developed at AFIT over

the past several years,(Routh, 1985; Russel, 1985; Smith,

1986; Lambert,_9.8.7- Snder, 1988).

The Fourier transform portion of the system was examined

and improved. The code was made more efficient. Two

Fourier transform routines (a fast Fourier transform and a

classical Fourier transform) were tested and compared. A

voting scheme was incorporated for examining multiple looks

at test faces. To further demonstrate performance, the

number of faces in the data base was doubled.

Recognition scores of up to 87% were achieved, compared

to 63 for Sander's process with Fourier coefficients as a

feature set and 67% for Lambert's process with a center-of-

mass feature set, (Sander, 1988:32).

-This thesis includes complete system documentation, to

assist those doing further research in this area. 'All

vii

ENHANCED AUTONOMOUS FACE RECOGNITION MACHINE

I.Introdugtjn

General Issue

For the past several years, much effort has been made at

the Air Force Institute of Technology to produce an

autonomous face recognition machine. The goal is for a

machine to recognize human faces quickly and accurately,

without human intervention. The current Autonomous Face

Recognition Machine (AFRM) is the work of many people,

including Routh, Russel, Smith, Lambert, and Sander. A

brief history of the development of that machine follows

next. (Routh, 1985; Russel, 1985; Smith, 1986; Lambert,

1987; Sander, 1988)

BackgQround

Routh's Theory (Routh, 1985). Routh proposed the theory

on which the AFRM was based when he published his Cortical

Thought Theory (CTT). Routh explored the idea of a

"gestalt", or essence, of an image as that which the human

brain saves to remember objects. He examined applications

in speech recognition.

Russel's AFRM (Russel, 1985). Russel applied this theory

and built the or!;inal AFRM. It was designed to have a

computer, with a video system attached, recognize faces.

1

The AFRM was trained to xecognize individuals by

processing four different video images of the same person's

face. The presumed gestalt of the face was caloulated and

saved in a data base. Recognition was then accomplished by

presenting still another video image of a face to the

computer. The gestalt for the face was calculated and then

compared, using Euclidean distance, to the averages of the

gestalts of each person in the data base in an attempt to

identify the person.

The process Russel used to form the gestalt from the

video image is shown in Figure 1. He acquired the image of

a face against a plain background. Face location was

accomplished by an operator centering the face in a frame.

The system could then easily separate the face from the

plain background. Next, the face image was preprocessed by

performing contrast enhancement. The face was then divided

in different ways to form six windows. Windowing was

necessary because thin symmetric faces were not separable

from wide symmetric faces in this system. Windows divided

the face into just the left half, just the right half, just

the top half, and so on. For each window, the gestalt was

calculated. Russel's algorithm for calculating the feature

set, or gestalt, was basically the two-dimensional center-

of-mass of the window, where the darkest portions were given

the highest values. The feature set for each face therefore

consisted of six ordered pairs, representing the coordinates

2

Acquire Image

(face against plain background)

Locate Face

(operator, manual)

Preprocess Image

(contrast enhancement)

Make 6 Face Windows

(use entire face)

Calculate Gestalt

(center-of-mass)

Figure 1. Russel's Image Processing (Russel, 1985)

3

of the center-of-mass of each of the six windows. This was

saved in the data base.

Smith's Imorovements (Smith, 1986). Russel's system was

limited by requiring a plain background behind the face (to

assist in finding the edges cf the face) anu by requiring

human intervention (an operator had to manually place the

face in a frame). Smith eliminated both of these

restrictions by implementing a new face locator. The

process he used is shown in Figure 2. His goal was to

locate faces in images with varying backgrounds. His

process looked for the brightness "signature" of various

facial features. For instance, if a line iv drawn

horizontally across a picture through a person's eyes, the

"signature" shows two approximately equal dark spots with

brightness on either side of each of them. Smith used a

different set of windows than Russel, since with the

uncontrolled background he could reliably locate only the

internal features of the face and not the edges. Smith's

AFRM did not perform as well as Russell's system, resulting

in lower recognition scores.

Lambert's Enhancements (Lambert, 1987). Lambert made

several enhancements to the AFRM. His process is shown in

Figure 3.

Lambert improved the speed of the system, primarily by

rehostinq it to its current environment on a Micro-VAX II.

4

Acquire Image

(RANDOM BACKGROUND)

Locate Fa~ce1

(FEATURE SIGNATURE)

Preprocess Image1
(contrast enhancement,
slightly modified)

Make 6 Face Windows

NT NLFEATURES ONLY)

Calculate Gestalt

(center-of-mass)

Figure 2. Smith's Image Processing (Smith, 1986)

5

Acquire Imagei

(random background,
MOVING TARGET OPTION)

I Locate FaceI
I (SHARPEN OPTION, BRIGHTNESSI NORMALIZE, 2-D FEATURES & ELLIPSE)

Preprocess Image

(contrast enhancement, SCALE)

Make 6 Face Windows

(USE APPROXIMATED FACE)

I I I
Calculate Gestalt

(center-of-mass)

Figure 3. Lambert's Image Processing (Lambert, 1987)

6

He improved the recognition scores of the AFRM by revising

the front-end of the system, where the face location process

occurs.

Lambert developed a technique to normalize the brightness

of an image. He used the local brightness to adjust the

contrast of the image pixels. This allowed for variation in

the overall brightness of the scene.

Lambert looked for facial features which he defined to be

two-dimensional dark spots, in a specified size range,

surrounded by brightness. He then looked for features that

together could form two eyes, a nose, and a mouth. This

method of finding faces produced fewer false alarms (that

is, declaring something to be a face that is not a face)

than did Smith's system. Finally, Lambert drew an ellipse

around the putative internal features to form a face. Where

Smith used the internal portions of the face (features

only), Lambert's ellipse approximated the edges of the face

and allowed more of the face to be processed. This gave

higher recognition scores than did Smith's system. Lambert

used still another set of windows, since his ellipse allowed

him to use more of the actual face than did Smith's view.

To speed the search for a face in an image, Lambert

provided the option of looking for a moving target. The

person to be recognized moves into the camera range. The

search for a face is limited to the area where movement was

noted.

7

gander's Further Enhancements (Sander, 1988). In the

next step in the evolution of the AFRM, Sander made further

improvements to the system. His process is shown in

Figure 4.

To improve recognition performance, Sander changed the

feature set to use the coefficients of a two-dimensional

discrete Fourier transform (2DDFT) of each window of the

face, instead of the darkness center-of-mass. 2DDFTs had

previously been used successfully for other pattern

recognition problems. Sander saved the DC component and the

first and second harmonics, resulting in a 5 X 5 array of

values for each window, giving 150 values for each face

image.

Sander's recognition algorithm continued to use the

shortest Euclidean distance between a test image feature set

and the trained face feature sets.

To reduce recognition time as the data base of faces

grows, Sander used a back-propagation neural network to

train the data base on faces and to perform recognition. If

successful, this would keep the recognition time a constant,

as a result of the distributed memory and computerized

properties of the network, regardless of the size of the

data base. The previous AFRM would respond progressively

more slowly as the data base of faces grew.

8

Acquire Image
(random background,

moving target option)

Locate Face
(sharpen option, brightness

normalize, 2-D features & ellipse)

Preprocess Image

(contrast enhancement, scale)III I
F Make 6 Face

Windows

(use approximated face)IIak 6 Fac W indw

Calculate Gestalt
(2-DIMENSIONAL DISCRETE

FOURIER TRANSFORM)

Figure 4. Sander's Image Processing (Sander, 1988)

9

Problem State snt

The AFRM is not sufficiently fast and accurate, with a

large number of faces, to be of practical operational use.

Research obiectives/Methodoloov

In order to make the AFRM run as quickly and accurately

as possible, with z large number of faces, the following

steps were taken in this thesis:

1. Examine the 2DDFT feature set. The substitution of a

Fourier transform for the center-of-mass calculation

did not perform as well as expected in the previous

thesis (Sander, 1988:29,30).

a. Sander's 2DDFT program was examined for possible

errors, and corrections were made.

b. The choice of the number of windows and their

contents was examined and reconsidered. Windows

were previously based on the center-of-mass

calculation (Sander, 1988:8,9). Sander did not

examine the choice of windows when changing from

the center-of-mass calculation to the use of

Fourier transforms (Sander, 1988:25).

c. Another Fourier transform routine was substituted

for the one used by Sander. System performance

and processing time were evaluated.

d. Using the third harmonic, as well as the current

DC term and first two harmonics, was considered.

10

Improved performance was weighed against increased

processing time.

2. Test the AFRM with more faces. This system had

previously only been trained to recognize 24 faces

(Sander, 1988:29). The data bases were expanded and

the system tested with 50 faces.

3. Test the use of multiple images of a person for

recognition. Experiments were run with the AFRM

taking multiple looks at a person, with a voting

scheme for resolution. Improved performance was

weighed against increased processing time.

4. Improve system documentation. The user's manual was

updated and expanded (Appendix A). Complete system

documentation was developed (Appendices A, B, and C),

to assist further research on the AFRM.

Assumptions

Sander's assumptions were not changed in this thesis.

They are as follows:

1. The subject(s) are looking squarely at the camera
(the head is not tilted or rotated.

2. The subject(s) are not wearing glasses.

3. The subject(s) have relaxed expressions (the face is
not deliberately cortorted).

4. Four pictures are sufficient to characterize a
person in the data base. (Sander, 1988:2)

11

Standards

Sander's standards were not changed in this thesis. They

are standards that have been met, and must continue to hold

as enhancements are made to the AFRM. The standards are as

follows:

1. The AFRM should demonstrate "human like"
classification of faces.

2. Recognition performance of the AFRM must remain at
least as good as that obtained by Russel.

3. No operator interaction is allowed in the face
location, windowing, and recognition processes.

4. The AFRM should be able to process scenes with a
random, uncontrolled background.

5. The AFRM must be able to process scenes with
multiple faces in them. (Sander, 1988:2-3)

The term "human like" implies success or failure during

the recognition process that would reflect the capability of

a human observer of the same data.

Scope/Limitations

The scope of this thesis was to meet the research

objectives previously described. The 2DDFT was examined,

corrected, and enhanced to assure proper recognition

performance. The system was tested against a larger data

base of people. The recognition portion of the system was

changed to incorporate a voting scheme using multiple test

images of a face. System performance for each modification

was weighed against processing time. Documentation of the

entire system was developed. No other suggested

improvements to the AFRM were addressed in this thesis.

12

Eguipment

The followin equipment was used for this thesis:

1. Micro-VAX Computer System

2. Imaging Technology Series 100 Image Processing Board

3. Sander's and Lambert's Computer Files (listed in
Appendix A)

4. Dage 650 Video Camera

5. Panasonic WV-5490 Monochrome Monitor

6. Tektronix 4632 Video Hard Copy Unit

7. MicroVMS Version 4.6

8. VAX C Version 2.4

9. ITEX Software Version 1.2

Support was needed from Systems Engineering throughout

this research. Support was also needed from fellow students

and others at AFIT to allow me to take their pictures to

increase my data base of faces.

Sumin rvm

This chapter provided a brief background and summary of

the work that preceded this thesis effort. Details can be

found in each contributor's dissertation or thesis. This

background formed the basis for this research project.

The parameters of this thesis were defined by the problem

statement, research objectives/methodology, assumptions,

standards, scope/limitation, equipment, and support.

13

The remaining chapters of this thesis describe further

evaluation and enhancements to the AFRM. Chapter 2

discusses the methodology used for this effort, and Chapter

3 explains the implementation techniques. In Chapter 4. the

results of this thesis are given. Chapter 5 gives

conclusions of the research and recommendations for further

study.

14

I. Methodology

Introduction

This is the fifth thesis research effort in the

development of the AFIT AFRM, and as the total research

effort is very large, there are likely to be subsequent

efforts to make the AFRM a practical, operating system.

Previous work using the substitution of a Fourier

transform for the center-of-mass calculation did not perform

as well as expected (Sander, 1988:29,30). A working feature

set for faces is critical to the face recognition process;

therefore, examination and correction of the use of Fourier

coefficients as a feature set was a next logical step.

Adding faces to the database was also an important step.

Making the data base as large as possible helps to prove

that the concepts behind the system are sound.

Multiple looks at a person's face, that is multiple face

images, with some sort of averaging or voting scheme, were

added in an attempt to improve recognition performance.

Previous research efforts included little system

documantation. Each succeeding researcher spends increasing

amounts of time examining the preceding work and figuring

out what the program does and how it does it. Time taken to

document the system was an important part of this thesis.

It will save follow-on research efforts precious time in

reviewing the AFRM program and associated files.

15

Feature Set

Justification of Method S~lected. "Finding an

appropriate feature set is one of the most difficult tasks

in the pattern recognition process" (Sander, 1988:22).

Sander briefly supports the choice of Fourier coefficients

as a feature set. Additional support can be found in the

literature:

"Transform theory has played a key role in image
processing for a number of years, and it continues to be
a topic of interest in theoretical as weal as applied
work in this field. Two-dimensional transforms are used
... for image enhancement, restoration, encoding, and
dercription." (Gonzalez and Wintz, 1977:36)

"The discrete Fourier transform often proves to be a
powerful tool for the characterization of picture
signals, the analysis of imaging systems, and the design
of algorithms for image signal processing." (Wahl,
1987:36)

Several applications of image processing are given, such

as analysis of fingerprints (Gonzalez and Wintz, 1977:xiii;

Wahl, 1987:1) and face profile processing (Wahl, 1987:1).

Fourier coefficients have been used as a feature set in

research here at AFIT, with much success in alphabet

analysis (Bush, 1977) and text recognition (O'Hair, 1984).

Sander chose the coefficients of a 2DDFT (two-dimensional

discrete Fourier transform) as the feature set, specifically

an FFT (fast Fourier transform). The use of an FFT

significantly reduces the number of calculations required to

complete the transform, compared to a classical Fourier

transform calculation (Gonzalez and Wintz, 1977:79, Wahl,

1987:41-42).

16

Resqarch MethodoloQv. Sander's test results with the FFT as

a feature set were disappointing. "Better recognition was

exoected from FaceDFT." (Sander, 1988:30)

In an attempt to demonstrate the 2DDFT as a good feature

set for faces, this researcher examined Sander's program for

possible errors. The code was checked to verify that the

inputs to the Fourier transform were correct. The outputs

of the Fourier transform, saved in the feature set file,

were checked to make sure that the correct values, the DC

component and first and second harmonics, were the values

saved.

Finally the transform subroutine itself was explored. No

citation was given for the transform routine although "an

already existing routine was used" (Sander, 1988:25). The

source of the code has since been discovered to be an AFIT

doctoral student (Fretheim, 1988). Freitheim confirmed that

his code had been thoroughly tested (Fretheim, 1989).

Sander's tests were then rerun to verify the results.

Since the results of the retest were not the same as

Sander's published results, it was assumed that some

parameter of his experiments had changed; most likely the

face images he left in his directories are not the ones he

used for testing.

Freitheim's Fourier transform program is an FFT (fast

Fourier transform), which, as mentioned before, runs much

faster than a classical transform by reducing the number of

17

required calculations. The input array must have dimensions

that are a power of two. Sander's input array to the FFT

was always 128 X 128. Since faces vary in size, any unused

portions of the array were filled with zeros. This gives

good results a. long as a large portion of the array is

filled with data and not zeros, since only the DC component

and two harmonics were saved. An examination of the code

showed that the input data was never larger than 64 X 64,

meaning that one-f-urth or less of the input array of the

FFT was used 'or actual data.

It was also noted that in filling these input arrays, in

preparation for t re transform, often every other pixel from

the image was used. This saves processing time with little

or no effect on the accuracy of the result (Kabrisky, 1989).

The code was changed to use a 64 X 64 array as input to

the FFT. Where the use of every other pixel resulted in 32

or less values along a dimension, tta code was changed to

use every pixel, to better fill the array with true data.

All face images were then rerun to recalculate their feature

sets, and all faces were tested to reevaluate AFRM

performance.

Since this method still did not completely fill the input

array (faces vary in size), a classical Fourier transform

was used, which could intrinsically compute the transform of

data files of arbitrary dimensions and does not require

input array dimensions to be a power of two. Normally, a

classical Fourier transform results in a much slower

18

program. However, since the Fourier transform routine need

only calculate the DC component plus two harmonics, some

processing speed could be regained. Another AFIT doctoral

student provided such a routine (O'Hair, 1989), which was

implemented in the AFRM, replacing the FFT. Tests of all

faces were rerun and performance compared to the FFT.

Another research objective in examination of the feature

set, was to evaluate the utility of particular windows.

Since the program allows the six windows of the face to be

weighted (the default is to weight them all equally), each

window was run alone, to see if perhaps one window gave the

same results (or better) than the whole system. Then only

that window would be needed in feature set calculations,

saving processing time.

The choice of window location and size was reevaluated.

Windows were originally chosen considering a center-of-mass

feature set, and not reconsidered with the substitution of

the Fourier transform (Sander, 1988: 25). Further research

showed that these windows were originally chosen because

humans found these to be good windows for face recognition

(Lambert, 1987:2-12). This choice of windows seems to be a

good method and turns out not to be related to the center-

of-mass calculation algorithm. Therefore, the window

contents were not changed in this thesis.

The final research objective in this area was to consider

adding coefficients of the third harmonic of the Fourier

Transform to the feature set, weighing increased processing

19

time against improved performance. The increased processing

time would not only occur in the calculation of the

transform, but also in the time needed to actually recognize

faces. When using a neural network for recognition, Sander

found the processing time (using a locally available

computer) with the third harmonic to be prohibitive (Sander,

1988:31). Since the recognition performance was improved

significantly with the other modifications described in this

thesis, the third harmonic was not needed as part of the

feature set.

Increasing Data Base Size

"A higher dimensioned feature vector should improve the

recognition capabilities of the system, by increasing the

separation of the template vectors stored for each person"

(Sander, 1988:2). This increased separation should mean

that the AFRM can run with comparable performance with a

larger data base of faces.

The AFRM was previously tested with 24 faces (Sander,

1988:29). In this thesis, the data base was increased to 50

faces.

Multiple Looks

Trained face values are the average of the feature sets

of four different images of a person's face. This helps to

smooth the data, hopefully finding the middle of the range

of values for each feature set entry. Test face values,

however, only use one face image and therefore only one set

20

of features. An averaging strategy is also logical for the

recognition process, so multiple looks at a face, with some

sort of averaging or voting, was examined.

As new people were added to the data base, additional

images were taken to allow for a voting strategy. A total

of eight pictures of each individual were taken, the four

needed for training and four for voting.

After training the AFRM for the new people, each of the

four test images was tested individually against the

training data base. The results were examined manually to

see if voting was likely to improve recognition performance.

Next the four feature sets for the four test images for

each person were averaged in the same way training feature

sets are handled. This average feature set for each test

face was then tested against the training data base and

performance measured and examined.

Documentation

Justification of Method Selected. Proper documentation

is critical in any system that is to be maintained.

"Programs are not used once and discarded, nor are they run

forever without change. They evolve" (Kernighan and

Plauger, 1978:25). The research on face recognition is not

complete; therefore, it is likely that the programs

developed in this and preceding theses will continue to

evolve.

21

Documentation is particularly important when those

maintaining a program are not those who developed it.

(Kernighan and Plauger, 1978:64-65). Comments can provide

important information to help someone understand the intent

of the program (Pressman, 1982:421). The AFRM software is

written in the C programming language, which with

capabilities such as complex data structures, requires the

programmer to "comment anything that is not obvious"

(Darnell and Margolis, 1988:27).

Lack of documentation causes follow-on researchers to

spend excessive resources understanding the work that

preceded them. Also without documentation, the researcher

may misunderstand complex code and make changes that have

unintended effects on the operation of the system. A lot of

time is then wasted in debugging the program.

Research Methodologv. 7ambert's User Manual (Lambert,

1987:Appendix C) was updated and included in this thesis as

Appendix A. The first chapter, which discusses normal

operation of the AFRM, required only a few modifications to

reflect additions and changes to the user's view of the

AFRM. The second chapter, which covers information for the

AFRM maintainer or developer, was expanded substantially.

Important file name linkages were explained. A full listing

of system files was added, with descriptions of those files.

Also, a full listing of system files left by Sander was

included, also with descriptions of those files, many of

which may still be of use.

22

Appendix B gives a detailed list of all changes made to

Sander's FACEDFT program for this thesis. Many changes were

needed to make the program run correctly and to make the

menus and messages consistent and more meaningful. Many

changes were of a software engineering nature, making the

code more readable and maintainable. Warnings are given for

potential problems discovered but not changed. Some changes

were not made because drastic changes, for documentation

proposes but not much affecting the execution of the

application, would make it difficult for those trying to

follow the development of code from one thesis to another.

Finally changes were made to the program to correct and

enhance the Fourier transform processing as described in a

previous section of this chapter.

The documentation for the program FACEDFT is given in

Appendix C. Sander wrote three versions of the face

program: FACEDFT implements the FFT only, FACENET implements

the neural network only, and FACENETDFT implements both the

FFT and the neural network (Sander, 1988:Appendix A). This

thesis deals only with changes to FACEDFT. However, many

subroutines are duplicated in these multiple versions.

Therefore, documentation that is traditionally included in

the program as comments is provided here as a separate

appendix. Future research may use any of these versions of

the face program. The documentation in Appendix C, while

specific to FACEDFT, should be very useful when dealing with

the other versions. The documentation contains a list of

23

all of the many external files used by the program, with

descriptions of those files' contents. Naming conventions

for those files are given. The linkage of the program to

those files, via DEFINE statements, is described.

References to external libraries, needed to link edit the

program, is discussed. The major global variables are

described. Finally, high-level pseudo-code for the entire

program is provided.

Appendix D gives the final program listing for the

FACEDFT program.

Appendix E gives substitution code to use the classical

Fourier transform in place of the FFT.

Summary

This chapter described the changes made to the AFRM for

this research effort, listing those changes and giving the

rationale behind them. The next chapter discusses how these

changes were implemented.

24

III. Implementation

Introduction

The implementation of the changes described in the

previous chapter was done in an evolutionary fashion. Most

of these modifications could be made incrementally, allowing

each to be coded, tested, and evaluated separately.

Feature Set

Changes were made carefully and incrementally to the

Fourier transform portion of the program. First the

existing code was studied and tests run on that system.

Next, changes were made to correct and enhance the existing

Fourier transform (FFT). In parallel, new faces were added

to the system. Then tests were run on all faces.

Performance for previous faces, new faces, and the

combination of all faces could then be examined. Next the

existing Fourier transform routine was replaced with a

classical Fourier transform. Tests on all faces were

repeated. Once again, performance was evaluated on all

faces, combined and separated into old and new.

The program is documented to allow future researchers to

choose the enhanced FFT or the classical Fourier transform.

Sander's software versions still exist on backup tape.

This includes his original version of the FFT as a feature

set, a version that uses a Neural Network for recognition,

25

and a version that combines the FFT feature set and Neural

Network. This allows comparisons to still be made between

Sander's feature set and the two feature set variations used

in this thesis. (This also allows work to be continued on

the Neural Network at a future date.)

IncreasinQ Data Base Size

As soon as Sander's system was evaluated, new faces were

added to the system, so that the larger data base would be

available to evaluate all changes to the AFRM.

Multiple Looks

Voting was looked at whenever testing with new faces.

This testing could not be done on face images left by

previous researchers, because there weren't sets of four

test images per person to use for voting. Voting was

examined for the changed version of the FFT coefficients

feature set and the classical Fourier transform coefficients

feature set, on new faces added to the system.

The code for voting was marked by comments, making it

easy to choose to use the voting scheme or not.

Documentat

The documentation was also done in an evolutionary

fashion. The first cut covered that part of the code that

had to be understood to start research on the other thesis

objectives. The documentation was corrected and expanded as

work progressed on those other objectives. Finally,

26

remaining gaps were filled in to provide as complete a set

of documentation as possible.

Many errors and potential problems were found and

corrected. These are listed in Appendix B. Some potential

problems were noted but not corrected. Appendix B lists

these as warnings and give workarounds where possible.

The overall structure of the program, variable names,

etc., were left intact, to avoid loss of continuity with

previous and parallel versions of the program. This meant

leaving inconsistencies in the structure of the code,

particularly noticeable in MENU1, where some processes are

broken out into subroutines while some rather long processes

are included inline. This also meant leaving such

unmeaningful names as MENU1, MENU2, MENU3, sx, sy, and many

more.

Documentation of the material left by Sander is given in

the User's Manual (Appendix A).

Summary

This chapter described how the changes described in

Chapter 2 were implemented in the AFRM. The next chapter

examines the results of these changes.

27

IV. Results

1ntroduction

This chapter presents the results of this thesis

research. Results are compared to previous theses where

applicable.

Feature Set

Sander's Results. Sander's FACEDFT program and data were

retested for comparison with his results. Table I shows the

results of these tests. The FACE column shows the

performance Sander obtained when testing his data against

Lambert's program. The AFRM recognized 16 of 24 people, or

67%. The FACEDFT column gives the results of Sander's FFT

version against that same data, where 15 of 24 people, or

63%, were correctly recognized.

Sander proposed that some of the problem may be that

Fourier transforms are more sensitive to tilt than are the

center-of-mass calculations used by Lambert (Sander,

1988:30). However, in adding more faces to the data base,

it was found that the face location algorithm was very

sensitive to tilt. Therefore faces with tilt are pretty

much eliminated by the face locator and never have feature

sets calculated. This researcher does not believe that tilt

explains the disappointing performance of the Fourier

transform in the AFRM.

28

Table 1. Comparison of FACE and FACEDFT

Statistics from
Sander Thesis Rerun of
(Sander, FACEDFT Test
1988:32)

Name FACE FACEDFT Retest of FACEDFT
Ven 1 Ver 2 Ver 3

rmaple 2 y y
mkabrisky 2 14 2
mlambert y y y
llambert y y y y
dlambert 2 2 2
srogers y y y
ecrawford y 4 4
mmayo y y y
jsillart y y y
dbane 2 y y
druck y 3 3
kcox y 2 2 3 2
efretheim y y y y y
iroberts 3 y y y
mdrylie y 7 y
gtarr y y y y
csabick y y y
mohair y 2 4 y y
ppleva 2 5 v
dbridges 4 y y y
ddoak y y y
glorimor 6 y y
rmorales y y y y
gdawson y 14 y

key: - y weans yes, face recognized correctly (first choice)
- number means face not recognized, number is placement

of correct person in list of choices
- >15 means correct person not in list of top 15

choices

29

Retelst 9f Sander- _ n. The remainder of Table I shows a

retest of Sander's program and Sander's data. Where

multiple test images existed, all were used, with simple

voting, as there was no way of knowing which Sander may have

used. The retest results are not identical to Sander's

test, recognizing 19 of 24 people. It is assumed that some

parameter of his experiments changed between theses; most

likely the face images left by Sander are not the same used

by him for his testing. It was decided to ignore these

retest results since the parameters of the test were not

well understood. Recognition performance in this thesis is

compared only with the results Sander claims.

At the same time, the faces were retested using each

window alone. Previously all windows were combined and

weighted equally for recognition calculations. These tests

were run before it was realized that the source of the data

could not be traced. The results of the individual window

testing are shown in Table 2, with the combined test also

presented for comparison. No single window showed superior

performance. Regardless of the source of the data, it

appears that combining all six windows gives the best

feature set for faces.

Test of Modified FACEDFT. Table 3 shows the results

obtained when testing the program with the modified FACEDFT

program. This is the version where the input array to the

Fourier transform is 64 X 64 and that array is filled as

30

Table 2. Comparison of FACEDFT
And Individual Windows

Rerun of Rerun of FACEDFT

FACEDFT with single window

Name Ver test 1 2 3 4 5 6

rmaple 1 y y y y y y y
mkabri:ky 1 2 4 3 6 3 y y
mlambert 1 y y 4 y y Y y
liambert 1 y y y y 2 2 y

2 y y y y 2 2 y
dlambert 1 2 y y 3 y 2 2
srogers i y y y y y y Y
ecrawford 1 4 4 9 9 2 2 3
mmayo 1 y y y y y y y
jsillart 1 y 2 2 2 Y y y
dbane 1 y y y y y Y y
druck 1 3 4 4 4 2 3 3
kcox 1 2 2 4 2 y 6 2

2 3 3 4 4 2 5 2
3 2 y 2 2 2 4 2

efretheim 1 y y y y 2 y y
2 y y y y y y y
3 y y y y 2 y y

iroberts 1 y 3 2 y y y 2
2 y 2 y y y y y

mdrylie 1 y y y y 2 y y
gtarr 1 y y y y y y y

2 y y y y y y y
csabick 1 y y y y Y y y
mohair 1 4 5 3 7 y 2 10

2 y 2 3 y 4 2 y
3 y y y 3 y y 5

ppleva 1 y 3 y 3 2 y y
dbridges 1 y 3 y y 3 y 2

2 y 3 y y 3 y 2
ddoak 1 y y y y y 3 3
glorirdor 1 y y y y Y Y y
rmorales 1 y y y y y y y

2 y y 3 y 3 y y
gdawson 1 y y 2 y y y y

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement

of correct person in list of choices
- >15 means correct person not in list of top 15

choices

31

Table 3. Changed eACEDFT

Name Ver 1 Ver 2 Ver 3 Ver 4 Averaged

mkabrisky y y y y y
mmaneelv' y y y 2 y
rfiler y y y y y
vm*lholen y y y y y
wrecla y y y y y
pwhalen 3 y y y y
jbrill y y y y y

* rjackson 9 5 6 5 y
mreinig 7 y 2 y y
jhamilton 5 5 i5 15 7

* rricart >15 10 10 >15 10
ssablan y y y y y
dbossert y y y y y
thamilton Y y 2 6 2
chogan 2 y y y y
rsmith 10 >15 9 7 6
tmanely y y y y y
pmarshall y y y y y
jiong >15 >15 >15 >15 >15
mleahy y y y y y
syarost 5 7 y y y
tdavis y y y y y
mjohnson y y y 2 y

*dumphress 5 4 4 4 3
jsrubar 2 y 2 y y
fbrown 2 y y y y
birobb y y y >15 y
gmiracle y y y y y
ssheldon y y y y y
sberger y y y y y
sfiler y y y y y
bconway y y y 2 y
dbarr y y y y y
kfife y y y y y

key: -y means yes, face recognized correctly (first choice)
-number means face not recognized, number is placement
of correct person in list of choices

->15 means correct person not in list of top 15
choices

32

Table 3. Changed FACEDFT (continued)

Name Ver 1 Ver 2 Ver 3

rmaple y y y
mlambert 3
dlambert y
srogers y
ecrawford 6

* mmayo y
jsillart y
dbane y 2 y

* druck >15
kcox 7
mdrylie 4
gtarr y y
mohair 3 y
dbridges 2 2
glorimor y
rmorales y y

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement

of correct person in list of choices
- >15 means correct person not in list of top 15

choices

33

much as possible with actual data Nther values are set to

zero). This table is divided into two sections, one for the

faces added in this thesis and one for the previously

digitized faces.

It was necessary to reprocess the previously digitized

faces to calculate their feature sets with the altered

program. This portion of the data base now contains only 16

faces, rather than the previous 24. Eight faces could not

be successfully reprocessed, as the face locator could not

find four face images to use for training. These eight sets

of faces were discarded and 34 new people added to total 50

faces.

Performance of the change to Sander's code alone can be

evaluated for the added faces by supposing only one test

image was taken, say version 1, and then considering those

results.

The previously digitized faces still used simple voting,

resulting in a tie for mohair.

The tabulated results are shown in Table 4, lines a, b,

and c. The recognition performance is in the same range as

those seen by Sander.

The processing time for the classical Fourier transform

was compared to the FFT. This was done informally, while

watching the AFRM recalculate features sets, since an

approximate comparison was all that was needed. There was

no noticeable difference in the time needed to calculate

feature sets.

34

Table 4. Tabulated Results

Modified FACEDFT

50 faces Raw Score Percentage

a) Previously digitized faces 9 or 10/16 56 or 63

b) Added faces ver 1 22/34 65
c) Combined with existing faces 31 or 32/50 62 or 64

d) Added faces simple vote 27 or 28/34 79 or 82
e) Combined with existing faces 36 or 38/50 72 or 76

f) Added faces averaged 28/34 82
g) Combined with existing faces 37 or 38/50 74 or 76

45 faces Raw Score Percentage

(revision of above scores)

h) Previously digitized faces 8 or 9/14 57 or 64

i) Added faces ver 1 22/31 71
j) Combined with existing faces 30 or 31/45 67 or 69

k) Added faces simple vote 27 or 28/31 87 or 90
1) Combined with existing faces 35 or 37/45 78 or 82

m) Added faces averaged 27/31 87
n) Combined with existing faces 35 or 36/45 78 or 80

Note: Where voting schemes result in a tie, two scores are
given separated by "or". The higher score is for the tie
counting as recognition and the lower score is for the tie
counting as failure to recognize.

35

Table 4. Tabulated Results (continued)

EACEFT

50 faces Raw Score Percentage

o) Previouly digitized faces 11/16 69

p) Added faces ver 1 23/34 68
q) Combined with existing faces 34/50 68

r) Added faces simple vote 26 or 27/34 76 or 79
s) Combined with existing faces 37 or 38/50 74 or 76

t) Added faces averaged 28/34 82
u) combined with existing faces 39/50 78

45 faces Raw Score Percentage

(revision of above scores)

v) Previouly digitized faces 11/14 79

w) Added faces ver 1 22/31 71
x) Combined with existing faces 33/45 73

y) Added faces simple vote 25 or 26/31 81 or 84
z) Combined with existing faces 36 or 37/45 80 or 82

aa) Added faces averaged 27/31 87
bb) Combined with existing faces 38/45 84

Note: Where voting schemes result in a tie, two scores are
given separated by "or". The higher score is for the tie
counting as recognition and the lower score is for the tie
counting as failure to recognize.

36

Face Location Problems. It was later discovered that

some faces, although located and processed, were not located

correctly. For example, sometimes a dark area under the

chin was used as the mouth instead of the mouth itself.

This would occur on only some of the faces. When four faces

are averaged for training, some using correct features and

some not, the feature set is distorted. The faces found to

have this problem are denoted in the tables by asterisks in

front of the name.

If these faces are discarded, becausu they were not

located and processed as intended by the algorithm, the

recognition performance scores must be revisited. The

resulting scores can be seen in Table 4, lines h, i, and j.

The scores for the previously digitized faces remained about

the same. There was an improvement in recognition scores

for added faces (67% or 69%, depending on resolution of the

tie) and for all faces (71%).

Test of FACEFT. FACEFT used a classical Fourier

transform instead of an FFT. The results of testing against

FACEFT are shown in Table 5. Once again the table is

divided into two portions, previously digitized faces and

added faces.

C! ~results for all 50 faces are tabulated in Table 4,

lines o, p, and q. Recognition scores are improved over the

FFT, at 68% and 69%. The results, after discarding the

faces not located and processed correctly, are shown in

37

Table 5. FACEFT

NIame Ver I. Ver 2 Ver 3 Ver 4 Averaged

2mkabri4sky y y y y y
nmaneely y y y 8 y
rfil'er y y y y y
vmilholen y y y y y
wirecla y y y y y
pwhalen 2 y y y y
jbrill y y y y y

* rjackson y y 2 y y
nireinig 2 y y y y
jhamilton y 3 y y y

* r-icart 5 6 4 65
ssablan y y y y y
dbossert Y y y y y
thamilton y y 2 2 y
chogan 2 2 y y
rsmith 7 3 10 13
tmanely y y y y y
pmarshal. y y y y y
jiong >15 >15 >15 >)15 >15
mleahy 3 3 3 3 3
syarost 5 4 2 y 2
tdavis y y y y y
mjohnson y y y 4 y

* dumphress 5 5 5 9 7
jsrubar 2 y 2 y y
fbrown 2 y 3 y y
brobb y >15 y y y
gmiracle y y y y y
ssheldon y y y y y
sberger y y y y y
sfiler y y y y y
bconway y y y y y
dbarr16 y y y y y
kfife y y y y y

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement

of correct person in list of choices
- >15 means correct person not in list of top 15

choices

38

Table 5. FACEFT (continued)

Name Ver i Ver 2 Ver 3

rmaple y y y
mlambert 6
dlambert y
srogers y
ecrawford 13

* mmayo 3
jsillart y
dbane y 2 y

* druck 11
kcox y
mdrylie y
gtarr y y
mohair 3 2
dbridges y y
glorimor y
rmorales y y

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement

of correct person in list of choices
- >15 means correct person not in list of top 15

choices

39

Table 4, lines v, w, and x. These are the best scores yet;

the best score being 79% for previously digitized faces,

added faces and combined faces scoring 71% and 73%,

respectively.

Increasing Data Base Size

The results of this change are not evaluated separately;

the value is in showing how program changes perform against

a larger data base of faces.

There were unanticipated problems found when adding new

faces to the data base. The Signal Processing Lab had moved

to a new location and the overhead lighting was different.
Many seemingly good face images could not be found by the

face locator. The overhead lighting was strong enough to

"wash out" the upper half of many faces, while creating dark

shadows on the lower portions of the face.

This situation was alleviated somewhat by placing a desk

light upside down on the floor near the camera. The problem

was also correctable on some faces by adjusting the

brightness threshold (an option on the main menu of the

AFRM).

Another problem, previously noted in this chapter, is

that the face locator would occasionally use an incorrect

part of the face as a feature. Most common was a dark

shadow between the mouth and chin being used as the mouth.

40

Multiple Looks

There are many ways to implement voting and then many

ways to score performance. Tables 3 and 5 (for programs

FACEDFT and FACEFT) show the results of testing with four

test images of each individual for new faces added to the

data base. Two voting schemes were evaluated.

First, a simple vote was used, counting how many times a

person was correctly identified. In cases with an even

number of faces, ties were broken by examination of who

ranked above an individual not successfully recognized.

Occasionally, there was still a tie, such as the tests on

mohair and jsrubar.

The results, before the face location problem was

discovered, are given in Table 4, lines d and e (79% or 82%

for added faces only and 72% or 76% for all faces) for

FACEDFT and lines r and s (76% or 79% for added faces only

and 74% or 76% all faces) for FACEFT. The results after

discarding the problem faces are shown in Table 4,lines k

and 1 (87% or 90% for ataded faces and 78% or 82% for 45

faces) for FACEDFT and lines y and z (81% or 84% for added

faces and 80% or 82% for 45 faces) for FACEFT. These are

improved scores over not using a voting scheme.

The second voting scheme is given in the "averaged"

column, referring to averaging the four test feature sets in

the same way training feature sets are done. By averaging

the four corresponding values for each feature, not only is

the closest face important, but how far off any missed faces

41

are is a factor in recognition. This was only tested with

new faces, as only those faces have four values for

averaging.

Performance on all added faces using averaging is shown

in Table 4, lines f and g (82% for added faces and 74 or 76%

for all faces) for FACEDFT and lines t and u (82% for added

faces and 78% for all faces) for FACEFT. The result, after

discarding the faces not located and processed correctly, is

shown in Table 4, lines m and n (87% for added faces and 78%

or 80% for 45 faces) for FACEDFT and lines aa and bb (87%

for added faces and 84% for 45 faces) for FACEFT.

Documentation

The results of documenting the system are difficult to

measure. This researcher referred often to notes that were

the basis for this documentation. But the more important

measure is how useful it is to those modifying this system

in the future.

Summary

This chapter showed the results of the research efforts of

this thesis. The next chapter discusses conclusions that

may be reached from these results.

42

V. Conclusions and Recommendations

Introduct-ion

This chapter presents conclusions that can be reached as

a result of this thesis research. Recommendations for

further development of the AFRM are provided.

Feature Set

Correcting and enhancing the use of the FFT to form the

feature set improved performance of the system, after the

incorrectly located faces were eliminated. Sander's

recognition score was 63%; here 71% recognition was achieved

for the added faces. Performance scores for previously

digitized faces was not improved, but were not totally

controlled for this thesis (previous processing of image not

well documented or understood). The recognition score for

all 45 faces was 67% or 69%, depending on how the tie is

resolved.

Substitution of the classical Fourier transform gave

equal or better overall recognition than the FFT. The

recognition score was 71% for added faces. Scores for

previously digitized faces improved significantly, to 79%.

The recognition score for all 45 faces was 73%.

When the windows of the face were examined individually,

no one window showed performance superior to the combination

of all windows. This can be seen in Table 2.

43

The choice of window contents was briefly evaluated and

no change is recommended.

Addition of the third harmonic to the feature set was

reconsidered. The possible increase in recognition

performance was not believed to be worth the extra

processing time, since recognition performance was

significantly improved by other means.

Increasing Data Base Size

Increasing the data base size was important for properly

evaluating other objecti es in this thesis. Adding more

people to the training and test data bases gives higher

confidence in the results.

Multip1e Looks

Adding multiple looks at a face for recognJ:ion, both by

simple voting and mathematical averaging, increased

performance of the AFRM for both of the Fourier transforms.

Since the averaging technique gave equal or better

performance than simple voting, the averaging technique is

preferred.

The best recognition score, 87% (assuming ties cannot be

resolved as recognition), was achieved by the combination of

either modifying the FFT or using the classical Fourier

transform, using the averaging technique for voting, and

eliminating faces not corrected located.

When all of these changes are combined, the FFT and

classical Fourier transform seem to perform equally well to

44

each other. Both the enhanced FFT and the classical Fourier

transform gave higher recognition scores than Sander

achieved.

pocumentation

The system documentation is now extensive and complete to

support future research efforts.

summary

This thesis demonstrates that the coefficients of the

Fourier transform are a good feature set for face

recognition, with 87% recognition scores realized.

Recommendations for Further Research

Many recommendations of Lambert, not yet investigated,

remain as potentially valuable areas to explore. These

include:

- use of color images

- use of binocular images

- use of a parallel processor

- development of a better set of facial features for
face location

Other recommendations of Lambert also remain valid. Those

listed above should be given higher priority (Lambert,

1987;6-2 through 6-5).

Many of Sander's recommendations were explored in this

thesis. The remaining suggestions that were not explored

but still quite valid are:

45

Ki

- search for a feature set that is scale and rotation
independent, such as use of the log z transform

- evaluate the implemented neural network and .compare
performance to other existing neural networks

- move the chosen neural network to a parallel
processing or vector processing machine (Sander,
1988:j5-36)

As a result of this thesis the following recommendations

are made:

- As mentioned above, Lambert suggested improvements to
the face location algorithm. This was found to be a
significant problem when adding faces to the AFRM.
with the possible selection of incorrect features that
are physically close to the correct features, manual
observation of the face location process is required.

- Perhaps controlled lighting should be added to list of
assumptions for the AFRM (Chapter 1), if the program
cannot be made to overcome the lighting problems.

- Further experimentation may demonstrate whether the
classical Fourier transform or the FFT is superior for
faces. Perhaps still another transform can be found
to improve performance further.

46

Appendix A

AFRM - Autonomous Face Recognition Machine

USER'S MANUAL

This is an updated version of the User's
Manual written by Lambert (Lambert,
1987:Appendix C). Those portions not
changed were copied verbatim. Some
portions were rewritten and material was
added and deletca to reflect the current
system.

47

Table of contents

Page

Introduction 49

I. Operation 50

Logging On and Off 50
Things You Should Not Do 51
Menus 52

I!. Technical Details 56

Files 56
File Linkages 57
Modification 59
Sander Files (Includes Lambert Files) . . . 61

48

Introduction

The information presented in this manual is divided into

2 parts: Chapter 1 gives enough information for a casual

user to operate the AFRM (Autonomous Face Recognition

Machine), and Chapter 2 gives information needed to maintain

the AFRM.

User-friendliness was a primary concern when developing

the AFRM. The AFRM is menu-driven, giving the user choices

of actions. Prompts tell the user exactly what is required

from each keyboard (user) entry. The system is as much as

possible fault tolerant. The AFRM code has been documented

thoroughly in Appendix C. The program is written in the C

programming language (Appendix D). The goal was to write

the code as efficiently as necessary, and then as readable

as possible.

It is hoped that future modification to the AFRM will

maintain an easy user interface and complete system

documentation.

49

I. Operation

Logging On and Off

The easiest way to get to know the AFRM is to sit down

and use it. Tt is located on the Micro-VAX II designated

IMAGER, or SMV2A, in the AFIT Signal and Information

Processing Lab. To run the AFRM, log onto IMAGER and

execute the program. For example:

run [kabrisky.brobb.code]facedft

The system will run automatically; it will perform several

seconds of hardware and software initialization, remind you

to turn on the camera and video monitor, and present the

main menu. When you are done using the AFRM, return to this

main menu and select the QUIT option. This will get you out

of the program, reminding you to turn off the camera anO

video monitor.

50

ThinQs You Should Not Do

1. The AFRM needs to create temporary files now and then

as a normal part of its operation. It will delete these

files as soon as they are no longer needed. Since these

files are created and deleted without informing the user,

the user should avoid saving files with these temporary file

names. Never save faces in files named:

BNORM.IMG
ORIG.IMG

At some unannounced time YOU WILL LOSE THEM.

2. The AFRM has been designed to be fault tolerant. You

can enter anything you want, at any prompt you want, and the

AFRM should handle it. The AFRM will inform you if your

input is invalid. The only entries that should not be

entered are CTRL-C and CTRL-Y, which terminate the program

without going to the main menu option QUIT. These should

not be used because the AFRM will not save updated database

files.

51

Menfu s

The menus allow the AFRM user to do the following:

0: QUIT
This is the proper way to exit the AFRM.
Updated database files are saved at this time.

1: ACQUIRE IMAGES
There are several ways to input images into the
AFRM and there is a sub-menu for all of the
options.

0: RETURN TO MAIN MENU

1: STATIONARY TARGET
Allows acquisition of a 512 X 480 image
from the camera.

2: MOVING TARGET
Acquires a background scene from the
camera (nobody in it), then acquires a
second scene (with subject). The AFRM
will provide the rectangular area which
bounds the region that changed between the
two scenes. This tavget area is all that
is processed by the face locator (if
locator is selected) and so the face
locator will be faster than it would be
for a full size scene as well as being
less likely to acquire a false target.

3: LOAD IMAGE FROM MEMORY
Allows user to load a previously stored
image (up to 200 X 200) to the video
screen.

4: SAVE IMAGE IN DATABASE
Allows user to save a full screen image
(512 X 480).

5: SET CAMERA PORT
The default is port (0). This allows
connecting additional cameras to ports (1)
and (2).

6: CAMERA CHECK
Allows continuous acqui-ition of images so
the camera can be positioned and focused.

7: RE-INITIALIZE HARDWARE
Go back to default camera port, clear the
video screen, etc.

52

8: LOAD LARGE IMAGE FROM MEMORY
Allows user to load a previously stored
full-screen image (512 X 480).

2: FIND FACES
The face location algorithm will look for faces
in the image on the screen and save all it
finds to temporary files. There is an option
to sharpen the scene that is normally not
needed but sometimes helps the face finding
process.

3: GESTALT AND IDENTIFY / SAVE
This option only works after a face(s) was
found by option 42. If no face(s) was found
then this option will return to the main menu.
This option runs the gestalt algorithm of the
first face found by option #2. Then it runs
the recognition algorithm on that face. During
recognition the user is allowed to save the
face and its gestalt data in the database.
There is no other time when a new face and its
gestalt data are available for saving in the
database, so save it NOW if desired, otherwise
it will have be gestalted again (faces are
easily deleted from the database if later not
needed). If more than one face was found in
option #2, then all faces will be gestalted and
identified in the order found.

4: DISPLAY CONTENTS OF DATABASE
Shows names of faces for which the AFRM has
been trained and names and version numbers of
faces that can be used for reccgnition.

5: DELETE A SUBJECT
This option deletes the training file for this
subject. The actual images and gestalt values
will still be saved as faces that can be used
for recognition and the AFRM can be retrained
with this subject later.

6: DELETE AN IMAGE
This option allows the deletion of single
images (files that are used for recognition).
The actual images are saved as images that are
neither trained or used for recognition, but
can later be reused for either purpose.

7: TRAIN
This allows the user to train the database with
4 files from the .IMG section (faces used for

53

recognition) of the database. The files must
all have the same name and must have different
version numbers. To exit this option at any
time, enter a zero version number.
Fault tolerance is really evident in this
section of the AFRM because it is so important
to maintain a correct database. The AFRM
constantly checks user inputs for validity and
gives out pertinent information when it finds a
mistake. For example, suppose it is decided to
train the AFRM with the name Smith, version
numbers 1, 2, 3, and 4. The AFRM will verify
that the name entered exists in the .IMG
section and that it does not exist in the
trained section. It will verify that files
exist for all the versions selected and that
the same version number was not selected more
than once. If a mistake is made, the user may
exit at any time.

8: DEMONSTRATION

0: RETURN TO MAIN MENU

1: IDENTIFY A PERSON
This option allows the user to demonstrate
the recognition capabilities with
previously gestalted and saved images,
trained and not (those used for
recognition). This option can also be
used to obtain recognition scores so that
the AFRM can be evaluated.

2: TOTAL SYSTEM
This option allows the user to run all
AFRM algorithms together starting at image
acquisition (moving target) and ending
with recognition. It is advised that the
user first select the camera port and do a
"camera check". Then this option is
chosen. When the screen is blank, have
the subject walk into the field of view of
the camera, turn and stare at the camera,
and stand still for a few seconds. As
soon as the AFRM "sees" the subject, it
will snap a picture and begin to look for
a face. If a face is found, then the AFRM
will gestalt it and try to recognize the
individual. (There is no option to save
the face.)

54

9: CHANGE THRESHOLD
This option is used to change the brightness
threshold used by the face location algorithm
(option #2). The default value is zero. To
get a darker image (more pixels), increase the
value, using a small (1 through 5 recommended)
positive integer. To get a lighter image (less
pixels), decrease the value, using a small
(-1 through -5 recommended) negative integer.

55

II. Technical Details

Fil es

Many files support the AFRM, both for development and

use. The files are backed-up on tape in the Signal and

Information Processing Lab. It contains the following:

[kabrisky.brobb) - main directory
editini.edt - for full-screen edit mode
login.com - for logging onto system

(kabrisky.brobb.code) - core directory
autotake.c - program to take 4 pictures of a
autotake.exe person and consolidate as one
autotake.obj large image
facedft.c - updated version of Sander system
facedft.exe (see Appendices B, C, and D)
facedft.obj
faceft.c - substitute transform for facedft

(see Appendix E)
optionsfile.opt - for compile
rl.com - for link

(kabrisky.brobb.dbase] - database for face program
others.dat - Lambert test face feature sets
train.dat - Lambert training face feature sets
bothersfft.dat - Sander test face feature sets
btrainfft.dat - Sander training face feature sets
robbothers.dat - Robb test face feature sets (from

latest facedft)
robbtrain.dat - Robb training face feature sets

(from latest facedft)
othersft.dat - Robb test face feature sets

(faceft)
trainft.dat - Robb training face feature sets

(faceft)

several files of the form:
name.img;* - image files - multiple versions of

test faces
name.pic;* - image files - multiple versions of

training faces
nameset.img;* - image files - sets of 4 test faces
nameset.pic;* - image files - sets of 4 training

faces

56

File Linkacts

There is an important linkage between the name.img;*

files and othersft.dat (or any others file), with a similar

important linkage between the name.pic;* files and

trainft.dat (or any training file). When images are

gestalted and saved (option 3), the user specifies a name

for the picture, usually the person's first initial and last

name. The AFRM adds this person to the database as

name.img;* where * is the next consecutive VMS version. The

person is also added to the gestalt file (such as

othersft.dat), the version number being the next consecutive

gestalt version for this file. THE AFRM ASSUMES THAT THESE

VERSION NUMBERS MATCH! This will be true if the user always

sticks with the same training and others file (can be

changed in the program) and if the user never uses VMS to

alter version numbers. NEVER DO A VMS PURGE COMMAND ON THE

DATABASE! Pixel images of people will be lost (forever, if

not backed up) and the assumed linkage between the image

file and gestalt entry version numbers will be lost.

Similarly, when the AFRM is trained for a person (option

07), the four entries in the others file are copied to the

training file as versions 1, 2, 3, and 4. (There can only

be one set of trained faces for a given name.) The four

name.iig;* files are copied to be name.pic files. This is a

simple VMS copy. The AFRM assumes that the version numbers

will be 1, 2, 3, and 4.

57

When a subject or image is deleted from the AFM.I, entries

are moved between the training and others files, and

name.img;*, name.pic;*, and name.pxl;* (pxl files not

gestalted) files may be moved around and version numbers

changed.

BOTTOM LINE: Never do a VMS purge command on the

database library. Do not move, copy, rename, etc. any pixel

files, unless doing development work on the AFRM, and taking

into consideration the above description. In that case, it

is recommended that the developer study the program and

documentation (Appendices C and D) to be certain the AFRM

will still work correctly. It would be even better to

design around these problems and correct them.

58

M dification

If a change is needed in the AFRM, then the C source code

must be edited, recompiled, and linked to the appropriate

libraries. The following commands are needed to accomplish

this:

edit name.c (where name is face or facedft
cc name /nooptimize or whatever version is to be
@rl name modified)

The nooptimize option on the compile (second command) is

necessary. When the optimizer is used (the default for the

command) the program will compile and link but not run

correctly. The error is usually a floating point error in

the subroutine called recognize. This has been reported to

Systems Engineering.

The third command runs a command file called rl.com which

identifies all the appropriate libraries for you (so you

don't have to do all that typing). rl.com and an associated

file called options_file.opt are located in the code

directory. The contents of these files are as follows:

rj.ncom

$ link 'Pl',duao:(itilOO.itex]itexloo/library,-
duaO:(itilOO.toolbox]toolbox/library,-
duaO:[itilOO.vms]vmsloo/library,-
dua2:[kabrisky.brobb.code~optionsfile/opt

options file.opt

sys$share:vaxcrtl.exe/share

When changing the program, make sure that the define

statements at the beginning of the program point to the

59

correct database libraries. See Appendices C and D for the

documentation and code.

To create a new training or others file, simply create

that file with a zero on the first line (means zero faces in

file) and an asterisk on the second line. Change the define

statement at the beginning of the program to point to the

file(s) to be used.

A modification that may be necessary in the future is a

change to the declared size of the arrays in the AFRM. The

AFRM is presently set to handle up to 100 subjects in the

training file (400 gestalt sets, tlist[400]) and 200 images

in the others file (200 gestalt sets, ilist(200]).

60

Sander', Files (Includes Lambert's Files)

These files are backed-up on TK50 tape 007 in the Signal

and Information Processing Lab. The save set is

KABRISKY.BCK, dated 29 Jan 29. It contains the following:

(kabrisky.brobb] - main directory
autotake.c - program to take 4 pictures of
autotake.exe individual and save as one image
autotake.obj
backup.com - back up system
con.com
edtini.edt - for full-screen edit
face.exe - Lambert system modified to run for

Sander
l.com - link C program
login.com - standard VMS file
read.me
rrobb.img - test image

(kabrisky.brobb.code]
b.lis - listing of compile of bfacefft
bat.com - run program
batl.com - run program
face.c - Lambert system modified to run for
face.exe Sander
face.obj
facedft.c - Sander system with DFT
facefft.c
facefft.exe
facemap.c - subroutine from system
facenet.c - Sander system with Neural Network
facenet.exe
facenet.jou
facenet.obj
facenetdft.c - Sander system with DFT and Neural

Network
facenetfft.c
facenetfft.exe
fft.c - subroutine from system
get.com - copy files
l.com - link program
loadface.c - program to load face file to screen
mom.c - program to calculate distances between
mom.exe feature sets of faces
mom2.c
mom2.exe
mom2.out
myface.c - piece of system
myface.exe

61

newface.c - piece of system
newface.exe
nl.com - link program
optionsfile.opt - needed to compile and link C programs
put.com - copy files
readfftfile.c - subroutine from system
results.
results.net
sander.img
savefft.c - subroutine from system
sub.doc - block comment set up to document

routines
testl5O20.net
testface.c - piece of system
testface.exe
testsubs.c
trans.c - Lambert's code for feature set

(kabrisky.brobb.code.origcode] - Lambert's files -
autotake.c documented in his thesis
autotake.exe (Lambert, 1987:
bright.c Appendix B)
bright.exe
face.c
facesig.c
face_sig.exe
graph.c
graph.exe
mti.c
mti.exe
newface.c
sixel.c
sixel exe
sub demo.c
sub-demo.exe

(kabrisky.brobb.code.thesisdbase] - empty

(kabrisky.brobb.dbase]
b.dat - training files and others (test faoe)
bothersfft.dat files (feature set values) for various
btrainfft.dat versions of code
nothersfft.dat
ntrainfft.dat
others.dat
othersfft.dat
train.dat
trainfft.dat

62

several files of the form:
name.img;* - pixel files - multiple versions of test

images
name.pic;* - pixel files - multiple versions of

training images

(kabrisky .brobb. prntimage]
baddisp. c
baddisp. exe
baddisp. obj
bat. com
bhalf.c
bhalf. exe
bhalf .obj
bhalf face. c
bhalf face. exe
bhalfface.obj
faceloc. img
1. com
phtest.c
phtest.exe
phtest. for
phtest.obj
prntbig. exe
prntbig. for
prntbig. lis
prntbig. obj
prnth. for
prnthuge. exe
prnthuge. for
prnthuge. obj
prntm. exe
prntm. for
prntm. obj
recognize. out

63

Appendix B

Program Chancres

64

Corrections and Cleanup:

- Hard-coded files names were located throughout the
program. These were all moved to the beginning of the
program in DEFINE statements. Those files now rc tho
library of picture images for training, the library of
picture images for testing, the library for picture images
not trained or tested, the training data base, and the
testing (others) data base.

- The program documentation stated that the data base files
were read into memory at the start of the AFRM and written
back to disk upon exit. This was not true. Now it is.

- The program attempted to save the data base files upon
exit only if those files changed. The criteria used was not
conclusive (same number of entries at start and end). Now
the data bases are truly only saved if changad. Flags
(TRAIN CHANGED and OTHERS-CHANGED) keep track of the files
status.

- Cleaned up menus:
- options in ascending order
- line spacing is consistent
- all options are listed (0.9 and 1.8 existed but were

not shown on the menu)
- code is ordered by option

- FACEREC has coding errors. Some code was partially
repeated and the subroutine would not link correctly. The
code was corrected.

- It was found that compilation with the optimizer (the
default) created a program that could fail with a floating
point overflow error. It was determined that pointers
within the structure were not correct. Compilation without
the optimizer eliminates the problem. This has been
reported to Systems Engineering.

- Some character arrays were too short to contain the
necessary data. This occurred when file names were built by
concatenating pieces of data. In the C programming
language, offsets are used even if out of range. This
caused unpredictable results, depending what was accessed.
Character arrays were expanded, including padding for
possible future expansion.

- Unused code was deleted. This inc.uded CORTRAN16,
RTRANSA, RTRANSB, NEWLINE, ORIGI, ORIGK, and LOADFACE.

65

- The recognition list (option 3) showed a ranking of all
faces in the data base. As the data base grew, this caused
the top rated faces (the most important ones) to roll out of
view. The recognition list now displays only thA top 15
faces.

- Where user input is limited (such as 10 characters for a
name), this limit is enforced.

- Deleting a trained face origindlly (Lambert) caused the
data to be moved from the training data base to the testing
(o 'iers) data base and the video images to be renamed. This
was changed by Sander to truly delete everything associated
with the face. This was restored to the Lambert algorithm.
Also, when images are deleted from the testing (other) datat
base, they are now moved to the pixel library.

- Comments have been updated.

- The title displayed on the video screen has been updated
to 1989.

- Spacing and indenting has been improved for readability.

- User messages have been updated and improved.

- When a face was displayed (1.3) the name field was not
changed. If a name was already up there (from ancther
option), it would remain, possibly causing confusion. This
field is now blanked when an image is displayed.

- When a face was displayed (1.3) it was put in the upper
left corner of the screen. It is now displayed centered
about an inch from the top of the screen.

- The training option (7) asked for version -1 to exit the
option. But the program only looks at the first character
(not two). This option has been changed to look for version
0 to exit.

- Some options did not allow the user to exit if entered
accidentally. This has been corrected where possible.

- The display of test images (others) showed a list of .IMG
files. This was misleading since it is really a list of
entries in the test (others) data base, which may or may not
match the list of .IMG files. This has been changed.

- Option 1.8 was very similar to option 1.3. Option 1.8 is
now rewritten to load full-screen pixel files to the video
screen.

66

Warnings:

The following problems were not corrected and should be
noted:

- Only the first digit of a version number is used by the
program. Version numbers must not exceed 9.

- Never purge the data base libraries. All of those
versions are needed by the AFRM.

- Never alter the contents of the data base libraries
without a thorough understanding of effects on the AFRM.
The program assumes that it is doing all manipulations to
this library. User alterations can affect the AFRM.

- The program assumes that the appropriate libraries and
files exist, as listed in the DEFINE statements at the
beginning of the program.

- FFT and DFT are used interchangeably in both the code and
comments.

- The code is very inconsistent in level of detail. For
instance, for the main menu, some detailed code is included
instream and some is broken out into subroutines. Also some
names are not meaningful (such as MENUl and MENU2). It was
decided not to make major changes in this area, because
those studying the progression of the program over the past
few years would lose the continuity of the program structure
and names used in the program.

67

Enhancements:

- The 2DDFT routine used a 128 X 128 array. It was
discovered that nothing larger than 64 X 64 was ever used
(the remainder padded with zeroes). The 2DDFT was changed
to use up to a 64 X 64 array.

- To build the input array to the 2DDFT, every other pixel
in both the horizontal and vertical direction was used. To
better fill the 64 X 64 array, sometimes every pixel in one
or both direction was used.

- A voting scheme was implemented in subroutine RECOGNIZE.
It is marked by comments so the programmer can choose to use
voting or not.

- A classical Fourier transform can be substituted for the
FFT used by Sander. It is in a separate source file called
FACEFT.C. It can be exchanged for comparable code in
FACEDFT.

68

Appendix C

Software Documentation

69

Table of Contents

Page

Files Used by FACEDFT 71

DEFINE References 73

INCLUDE References 73

Important Global Variables 73

High-Level Pseudo-Code 74
MAIN 74
MENUI 75
IENU2 77
MENU2. 78
FACEMAP 79
FEATUREMAP .A........ 79
GESTALT 80
SAVE FFT 80
CLEAR CRAY 80
FFT2 80
FFT 80
BRIGHT NORM 81
CONT ENHANCE 81
SCALE 81
FACEREC 82
RECOGNIZE 83
ISOLATE 85
AFRIM 85
DEL 86
PRTC 86
CLS 86
READFFTFILE 86
WRITEFFTFILE 86
DISPLAY 86
COPYFILE 86

FACEFT 87

70

Files Used by FACEDFT:

- file containing feature sets for trained faces
pointed to by DEFINE of TRAIN

format is:

integer - number of face entries in file

for each entry (there are 4 entries for each trained
person):

character - name for face (first initial and last
name)

integer - version number
double - 6 X 5 X 5

for each of 6 windows there is a 5 X 5
array (gestalt) of features, which is
the 2DDFT (DC and 2 harmonics)

* - EOF marker

- file containing feature sets for test (others) faces
pointed to by DEFINE of OTHERS

format is:

integer - number of face entries in file

for each entry (there is 1 entry for each face test
image):

character - name for face (first initial and last
name)

integer - version number
double - 6 X 5 X 5

for each of 6 windows there is a 5 X 5
array (gestalt) of features, which is
the 2DDFT (DC and 2 harmonics)

* - EOF marker

- name.pic;* in DBASEDIR -- trained face images (pixels),
where name is the first initial and last name of the
person; there should be four version for each person

- name.img;* in IMAGEDIR -- test (others) face images
(pixels), where name is the first initial and last
name of the person

- name.pxl;* in PIXELDIR -- any other face images (pixels)
not matching trained or test faces

71

- orig.img;* -- used to temporarily save an original face
image

- bnorm, img;* -- used to temporarily save a brightness
normalized face image

72

DEFINg Re ternce:_

DBASEDIR - library with pixel images used for training
IMAGEDIR -. library with pixel images used for testing

(others)
PIXELDIR - library with other pixel images
TRAIN - file of features for trained faces
OTHERS - file of featured for test (others) faces

INCLUDE ReferenQgs

These statements are needed to link this program with
standard system routines (I/O, etc.), system math routines,
and ITEX (video processing) routines.

Important Global Variables:

TLIST - structure list for up to 400 trained face
entries; with 4 entries per face, this is 100
trained faces

- during execution of the AFRM, the TRAIN file
resides in this structure list to speed
execution of the system

I - number of trained face entries in TLIST

ILIST - structure list for up to 100 test face image
entries

- during execution of the AFRM, the OTHERS file
resides in this structure list to speed
execution of the system

K - number of test face image entries in ILIST

THR - brightness threshold

SXSY, - position and dimensions for face
FX,FY

TRAINED-CHANGED - used to determine whether or not TLIST
structure should be written back to the
TRAIN file when application is terminated

OTHERS-CHANGED - used to determine whether or not ILIST
structure should be written back to the
OTHERS file when application is terminated

73

*

High-Level Pseudo-Code:

MAIN - initialize system/hardware
- display title screen on video screen
- call READFFTFILE twice to read trained faces

and test (OTHERS) faces into main metiory (TLIST
and ILIST)

- initialize. TRAIN CHAHGED and OTHERS CHANGED
flags to false

- display and execute MENU1 to show and perform
main menu

74

MENU1 - display main menu and execute user's choice:

0: quit
- if changed, save trained faces and test

faces from main memory (TLIST and ILIST)
back into TRAIN and OTHERS files

- return to operating system

1: acquire images
- call MENU2 to give options

2: find faces
- give user option to sharpen faces
- call SHARPEN if option chosen
- call FACEMAP

3: gestalt and identify / save
- call FACEREC

4: display contents of database
- call DISPLAY with trained faces (TLIST)
- call DISPLAY with test (others) face

images (ILIST)

5: delete a subject
- call DISPLAY with trained faces (TLIST) to
show user choices

- get subject's name from user
- loop through trained faces (TLIST)
- if subject's name found
- loop through test (others) face images

(ILIST) to find subject's name and
largest version number

- .,ncrement that largest version number
- loop 4 times (4 versions), copying
TLIST entries to ILIST as new versions

- move actual images from DBASEDIR to
IMAGEDIR

- continue to loop through TLIST, moving
the remaining images up 4 places (to
delete subject)

- if subject not found in TLIST
- print error message

- xet TRAINEDCHANGED and OTHERSCHANGED
flags

6: delete an image
- call DISPLAY with test face images (ILIST)

to show user choices
- get subject's name and version number from

user

75

- loop through test face images (ILIST)
- if subject's name and version number
match test face image
- move actual images from IMAGEDIR to

PIXELDIR
- continue to loop through ILIST, moving
each entry up one place (to delete
subject)

- if subject not found in ILIST
- print error message

- set OTHERS-CHANGED flag

7: train
- call DISPLAY with trained faces (TLIST) to

show user names of trained people
- call DISPLAY with test face images (ILIST)

to give user choices
- get subject's name from user
- loop through TLIST, looking for subject
name

- if no match, print error message and exit
option

- ask user for 4 version numbers
- loop 4 times (4 versions), verifying
unique version numbers and searching ILIST
to verify existence of image files

- print error messages as appropriate
- loop 4 times (4 versions), copying entries

from ILIST to TLIST, and getting rid of
ILIST entries by moving remaining entries
up

- move actual images from IMAGEDIR 'to
DBASEDIR

- set TRAINEDCHANGED and OTHERS CHANGED
flags

8: demonstration
- call MENU3

9: change threshold
- allow user to enter new variable threshold

(used by BRIGHT-NORM)

76

MENU2 - display menu and execute user's choice:

0: return to main menu

1: stationary target
- use ITEX routines to put camera image on
video screen

2: moving target
- use ITEX routines to put camera image on
video screen

- subtract successive images and look for
movement (change)

- use ISOLATE to isolate target from
surroundings

3: load image from memory
- loads an image file (pixels) of up to

200 X 200
to the screen, centered and near the top

4: save image
- saves an entire video screen image to an

image (pixel) file in PIXELDIR

5: set camera port
- allow user to choose camera port 0, 1,
or 2

6: camera check
- allow user to adjust camera (focus and

such)

7: re-initialize hardware
- initialize hardware and clear video screen

8: load face from memory
- similar to option 3 except loads a full-

screen image

77

MENU3 - display menu and execute user's choice:

0: return to main menu

1: identify a person
- call DISPLAY with test face images (ILIST)

to give user choices
- prompt user for person's name and version

number
- search ILIST for face entry
- display corresponding picture on video
screen

- call RECOGNIZE

2: total system
- call AFRM

78

FACEMAP - use BRIGHTNORM to brightness-normalize the
image; then use FEATUREMAP to look for possible
facial features (eyes, nose, mouth), then draw
ellipse and rectangle around features to define
face, saving bnormimg and orig.img

FEATUREMAP - look for possible features

79

GESTALT - display windows on video terminal
- set up 6 windows for face

- calculate gestalt, or feature set, for each
window
- use CLEAR CRAY to initialize calculation
arrays to zero

- put values for windows in calculation arrays
- call FFT2 (2DDFT routine)
- call SAVEFFT to save Fourier values (DC and

first two hatmonics) in ILIST[0] (work space)

SAVEFFT - save 2DDFT information in ILIST(0] (working
space)

- the feature set for each window for each face
is a 5 X 5 array (DC value and first two
harmonics)

- this data must be copied from the calculation
arrays to ILIST(0]:

0 1 2 3 4

0 crayi crayi crayi crayi crayi
02 [01](02] (00)(02] (63](02] (623(02]

1 crayi crayi crayi crayi crayi
(02](01) [01)(01] (00](01] (63](01] (623(01]

2 crayi crayi crayr crayr crayr
(023(00] (01)(00] [00](00] (003(01] [003(02]

3 crayr crayr crayr crayr crayr
(01](62] (01)(63] (01](00] (01][01] (01][02]

4 crayr crayr crayr crayr crayr
(023[62] (02](63] (023(00) (02](01] (02](0]

CLEARCRAY - clears (sets to zero) the calculation arrays to
be us for the 2DDFT

FFT2 - perform 2DDFT (two-dimensional discrete Fourier
transform) with FFT (fast Fourier transform):

- call FFT for each row
- call FFT for each column

FFT - perform one-dimensional fast Fourier transform

80

BRIGHTNORM - brightness-normalize image
(Lambert, 1987:3-15 to 3-21)
- use threshold set with main menu, option 9

CONTENHANCE - contrast-enhance image
(Lambert, 1987:3-21, 3-22)

SCALE - rescale image if needed

81

FACEREC - display brightness normalized face (bnorm.img)
- call CONTTENHANCE (commented out in this
version)

- call SCALE (commented out in this version)
- call GESTALT to calculate feature set
- display original face (orig.img)
- if called from main menu option 3
- ask user whether or not to save face in data
base
- for save,
- ask for subject name
- find highest version number for this name

and increment
- add face information to ILIST
- save face in name.img file in IMAGEDIR
- set OTHERS CHANGED flag

- call RECOGNIZE (using ILIST[0]) to try to
recognize face

- delete bnorm.img and orig.img

82

RECOGNIZE - attempts to recognize the current image

(parameter passed which is pointer in ILIST)

- loop through all 6 windows

- loop through all trained people (sets of 4
faces)

gix = the average of this feature for the
4 training entries

gux = the corresponding test feature (can
also be averaged if voting scheme
used)

sum the squares of the difference between
each feature and gix and divide that sum
by 4

sigix = the square root of the value just
calculated

if sigix < 0.5, set it to 0.5

c is the running sum of

(gix - gux)2 / 4 * sigix 2

- v = e "€/ I°° * the window weight
(default 1.0)

Note: The value of the variable c now gives
a measure of closeness for the test feature
set to trained feature sets. This last
equation, giving v, reverses the values so
that a higher score means a closer value
and a lower score means a further value.
This equation also scales values between
zero and one.

- loop through all people
- the recognition distance for each person

against the test image is the sum of the v
values for the six windows. This value is
between zero and one, with the highest
value as the closest to the test image

- sort the recognition distances

- show the three closest faces and print the
names and distance values for the closest 15
faces

83

- if there aren't three faces close enough
(settable value), print message

- Note: windows can be weighted by setting
values (default is all equal)

84

ISOLATE - looks for moving target (changed pixels) on top
half of screen

AFRM - for demo, run through entire AFRM process,
using MTI (moving target indicator) and not
saving any images or feature sets

85

DEL - delete current image - BNORM.IMG and ORIG.1WMG

PRTC - prompt user to press return to continue

CLS - clear the terminal screen

READFFTFILE - read a feature set file (first parameter) and
load into structure (second parameter)

- first read an integer that gives number of
entries in file

- then loop to read entries and put in
structure

- for each entry there is a name followed by
6 (windows) X 5 X 5 (features) floating
values

- Note* position zero in the structure is a
work area and is not used by this procedure

WRITEFFTFILE - save feature set file (first parameter),
saving from structure (second parameter)

- reverses read process (described above)

DISPLAY - first parameter gives structure (TLIST or
ILIST)
second parameter gives number of entries in
structure third parameter is a flag for TLIST
or ILIST

- if TLIST, display names of people found in
TLIST

- if ILIST, display names and version numbers for
people found in ILIST

COPYFILF - build and execute command to copy one file
kfIrst parameter) to another file (second
parameter)

86

FACMF

FACEFT.C is a separate source file. It contains alternate
versions of GESTALT, SAVEFFT, CLEAR CRAY, and FT2. These
routines can be swapped for the comparable code in FACEDFT.C
to use a classical Fourier transform in place of the FFT.

87

Appendix D

88

* This is FACEDFT.C

* Name FACE - AUTONOMOUS FACE RECOGNITION MACHINE

* Author: Laurence C. Lambert - 1987
* Based on the Data Getueral (Eclipse/Nova) AFPM by E. Smith

* 12 JAN 88 L. Lambert

* Modified in 1988 by D. Sander

* Major change was to use 2DDFT for feature vectors instead
* of moment calculation

* Modified in 1989 by B. Robb

* Major changes were to add choice of a simple (not fast) Fourier
* Transform for feature set (see FACEFT.C), averaging of four test
* images for recognition, and several clean-up changes

89

=define dbasedir "Ikabrisky.brobb.dbaso)"
4define imagedir "1(kabrisky brobb dbase J'
*tdefine pixe].dir "(kabrisky.brobb.dbase)'
adefine train "(kabrisky.brobb.dbaserobbcrain.da'"
gdefine others "(kabrisky.brobb.dbaselrobbothors.dat"I

#include 3 sys$library:stdio.h"

Pzinc1.ude "duaO: fitilOO.itexjitexlOO.h"

#include <mach>

static int option, tost,sy~sx, fy, fx,nf,x,y., thr-O;
int i~k; /* E. - size of tlist, k - size of Ilist
char train changed,oathers-changed;

struct list (
char name(llj;
int nuni;
double featuro[6)(5)(5j;

static struct list tlist(4001 - (0,0);
static struct list ilist[200) - (0,0);
static double gauss(257);

90

main() /* 23 */

unsigned base - Oxl6O0;
long mem - Ox2OOOOOL;
inc flag - l,block - 8;

sechdw(base,mem,flag,block);
initialize();
sclear(lOO,1);
cls();
printf("\n Initializing hardware and reading dbase files.");
printf("\n Please turn on the video monitor and the camera.");
text(120,200,O,8,0,"AFRM");
text(1l0,415,0,1,0," AIR FORCE INSTITUTE OF TECHNOLOGY");
text(l10,430,0,1,O," SIGNAL PROCESSING LABORATORY");
text(11O,445,0,1,0,"AUTONOMOUS FACE RECOGNITION MACHINE");
cexc(llO,460,Ol,O," 1989");
/* del();*/
i - readffcfile(train,tlist);
k - readfftfile(others,ilist);
train-changed - °ff;
others-change' - 'f;

- sx - ,y - 0;
fy - 511;

,l0;

91

menuL(1* 55 *

char t2(801,t3(801,temfp(801,ch(80j; /* Jj and mn are counters *
int vert5lJ,1.,m; /* ver(l-41 - file version numbers to train on.,*

int r,w,wl,w2;
it roc(5) -(-20.-10,0,10,20);

for(;;)

cisO);
printf("\n AUTONOMOUS FACE RECOGNITION KACHINE\n")
printf("\n ***** M4AIN MENU *****\n)
printf(H\n O:QUIT");
printf("\n I.:ACQUIRE IMAGES");
printf("\n 2:FIND FACES");
printf("\n 3:GESTALT AND IDENTIFY / SAVE");
printf("\n 4:DISPLAY CONTENTS OF DATABASE");
printf("\n S:DELETE A SUBJECT");
printf("\n 6:DELETE AN IMAGE");
printf("\n 7:TRAIN");
printf("\n 8:DEMONSTRATION");
printf("\n 9 :CHANGE THRESHOLD\n\n\n\n\n\n<");

scanf("1%d" ,&option);

cisO);

switch(option)(

case 0:
printf("\n\n saving DBASE files...");
if (train changed !- If')

writefftfile(train, tlist, i);
if (others changed I- If')

writefftfile(others, ilist,k);
cls(:):

printf(" Please turn off the video monitor and the camera.");
printf("\n\n\n\n\n\n\n\n\n\n\n\n");
return;

case 1:
renu2();
break;

case 2:
printf("\n Sharpen image? (Y/N/Quit) >)
scanf("%s" ,ch);
if (ch[O] - q' ch(OJ - 'Q') break;
if (ch(Oj - 'y' ch(O] - 'Y')(

sharpen(sx,sy,fx-sxfy-sy,3);

92

facenapO);
break;

case 3:
facerec(l);
break;

case 4:

display(tlist,k,B);

prco
break-,

case 5:
display(tlist, 1,8);
printf("\n\n ***DELETE SUBJECT ***)
printf("\n\n Are you sure (YIN)? >11);
scanf(Qls" ,cerp);
if (temp[O) I- IY && temp(O) I- #y') break;
princf('\n\n Enter subject's name. >11);
scanf("ts" , tenip);
printf(II\nI);

test - 0;
for (J-1; J<(t+l); j-j+4)

if ((scrncrnp(tlist~jj.name,temp,ll)) -- 0)
1. - 0; /N, look for highest existing version of IMKG file. *
for (rn-1; rn<(k+l); mn++)

if (strncr.np(ilist(rn.name,temp,i)-0 && ilist(m).nn)->l)
l-ilistrn).nurn;

1 - 1 + 1; /* add 1 to highest version to get new version. *

for (rn-1; mn<5; mn++) / * put 4 new versions into ilist. *
k - k + 1;
ilist(k].nane(Oj -\1

strncat(ilist(kJ .name~temp,ll);
ilist(k).num - 1;
for (w-0; w<6; w++)

for (wl-O;wl<5 ;wi++)
for (w2- ; w2<5 ;w2++)

ilistfk) .feuture~w] (wilIw2] -
tlist(j+(rn-1))j.feature(w](wl] (w2);

l4-4-

1 - 1 - 4;
for (mn-0; mn<4; mn++)

t2fO] -- \;
t3[0) - \;
strcat(t2, dbasedir);
strcat(t3, imagedir);
strcat(t2, tenip);
strcat(t3,temp);

93

strcat:(t2, ".pic;\O1);
strcat*e3, "1 .m;01

ch['l) - \1
ch(O) - m + 1 + 10O;
strcat(t2,ch);
ch[OJ - I. + '0';
strcat(t3,ch);
copyfile(c2,0c);
delece(t3);

for (rn-j; m<(!-3); m++) tIlisc(mI tlist(m+4J;
printf("1\n");
£ i - 4;
j i + 2; /* forces end of loop through tlist *
test - 1.; /* indicates that subject was found *

if (test 1- 1) printf("\n\n Subject not found.");
elseI

printfQ'\n\n Subject del.eted")
printf("(Moved from training data base");
princf(" to image data base)");
train -changed - I'
others-changed-

prtco;
break;

case 6:
dispLay(ilist,k,6);
printf("\n\n ***DELETE IMAGE ***)
printf("\n\n Are you sure (YIN)? >)
scanf(I'%s" ,ten'p);
if (temp[O] I- IY' && temp(0J !- 'y') break;
printf("\n\n Enter subject's name. >)
scanf(I"%s" ,tenip);
printf("\n\n Enter version number. >)
scanE ("%s,ch);
printf("\n");

test - 0;
for (J-1; J<(k+l); J++)

if (strncmp(ilist~j].name,temp1LL) - 0)
if (ilist(j).num -- (ch(OJ - 101))

t2(01 - \;
t3(0] - \;
strcat(t2, imagedir);
strcat(t3,pixeldir);
strcat(t2 ,temp);
strcat(t3, temp);
strcat(t2,".img;\0");
strcat(t21ch);

94

strcac(c3, ' .pxl\O");
copyfle(t2,t3);
delete(t2);
for (m-j; m<k; m++) ilisc(mJ ilisc(m+l;

k -k - 1;
j- k + 2;
test 1;

if (test 1- 1) prlntf("\n\n Image file not found.");

else I
printf("\n\n Image file deleted ");
princf("(oved from image data base");
printf(" to pixel data base)");
otherschanged - 'V;

prtc();
break;

case 7:
display(clist, i,8); /* 194 */
display(ilist,k,6);

printf("\n\n ***** TRAIN *****");
printf("\n\n Enter person's name. >");
scanf("%s",temp);

test - 0;
for (1-1; l<(i+l); 1-1+4) /* test name */

if ((strncmp(tlist(lJ.name,temp,ll)) - 0) test - 1;
if (test - 1) (

printf("\n That name already exists in the training file.");
prtco;
break;

for (1-i; l<(k+l); 1++)
if ((strncmp(ilist[1].name,temp,ll)) -- 0) test - 2;

if (test 1- 2) (
printf("\n There are no image files with that name.");
prtc();
break;

printf("\n\n You must enter 4 valid (and unique)");
printf(" file version numbers.");
printf("\n (Enter 0 (zero) to quit training procedure)");

for (j-l; J<5; j++) (
printf("\n Enter version number for training file # ");
princf("%ds" ,J,">");
scanf("%s" ,ch);
ver[j) - ch(O- '0';

95

if (ver(j) > 0)1
cest - 0
for (1-1; 1<j; !++)

if (ver(1J - veril))
display(ilis:,k.6);
printf("\n\n You already selected:");
for %'m-1; tn<j; mH+) printf("%s%d"," ",verlml);
j - j -1
test 1

if (test !- 1)
for (1-1.; 1le(k+l); 1++)

if (strncimp(ilist(l).name,temp,ll) 0
6ilist(Il.num - ver(jj)
test - 1;
1 k + 2;

if (test -0)

display(ilist,k,6);
printf("%sld","\n\n File version *",ver(J j);
printf(" not found, try another.");
if (j 1'- 1)

printf(" (You already selected:");
for (1-1; 1<j; 1+4.) printf("%s%d"," 11.ver(lj);
princf(")");

j - j -1

else j - 5;

if Qj -- 6) break;

for (J-1; J<S; J++)
L - i + 1;

for (1-1; 1<(k+l); 1.++)
if (strncmp(ilistfl].name,temp~ll) -0

&& ilist~ll.num - ver~jI)

/* find proper gestalt file in juist, *
tlist~iJ.nun - J; 1* put in tiist, *
for (rn-i; m<k; m++) ilist(mJ - ilist~m+lI;
k - k - 1; /* delete from ilist, *

t2[01 - \;
t3(0J - \;
strcat(t2.dbasedir);
strcat(t3 ,imagedir);
strcat(t2, temp);
strcat(t3, cemp);
strcat(t2, ".pic;\O");

96

strcat(tr, ". .MA0

ch(I.J - 10
ch(OJ ver(jI + 0';
strcat(t31ch);
ch(OJ - j + 101;
scrcaz(t2,ch);
copyfile(t3, t2);
delete(t3);

princfQ'%s~s~s","\n\n The training file now contains <,cp m >)
printf("(Moved from image data base)");
train changed I#
others changed
prtco,
break;

case 8:
menu3();
break;

case 9:
printf("Enter the new variable threshold >)
scanf("%d" ,&chr);
break;

default:
break;

97

menu2() /* 287 */

inc cam;
char nme[S0]),cltSO1,c2(80,cemp(80;

for (;;) (

CIS();
princf("\n ***** ACQUISITION OF IMAGES *****\n");
princf("\n O:RETURN TO MAIN MENU");
princf("\n 1:STATIONARY TARGET");
prlncf("\n 2:HOVING TARGET");
prlncf("\n 3:LOAD IMAGE FROM MEMORY");
princf("\n 4:SAVE IMAGE IN DATABASE");
princf("\n 5:SET CAMERA PORT");
princf("\n 6:CAMERA CHECK");
princf("\n 7:RE-INITIALIZE HARDWARE");
princf("\n 8:LOAD LARGE IMAGE FROM MEMORY");
pr incf("\n\n\n\n\n\n<");
scanf("%d" ,&option);
cIs();

switch (option)

case 0:
return;

case 1:
nf - sx - sy - 0;
fx - fy - 511;
getcharo;
princf("\n ***** STATIONARY TARGET *****");
printf("\n\n Acquire new image (Y/N)? >");
scanf("%s", temp);
if (cemp(O - 'Y' Ii temp(O - 'y')

grab(O);
prtc;
stopgrab(l);

break;

case 2:
nf - 0; /* this algorithm sets sx,syfxfy to target's locar.ion */
printf("\n ***** MOVING TARGET *****\n\n");
getcharo;
printf('\n Prepare background image");
printf(" and press RETURN to continue. >");
waitvbo; /* The aclear() is used in this routine to */
grab(O); /* clear the 1st 16 columns of the image */
getcharo; /* because of an X SPIN delay of the image.*/
stopgrab(l); /* Therefore the 256x512 image is really */

98

socracg(X-SP1,41,0); f only a 256x496 Imago. *

aclcar(0,0,16,768,O):
secrog(SCROLL,256);
princf("\n\n Prepare subjecc image");
princf(" and press RETURN4 to continue. >)
wa I vbO (): * Scrolling 256 scores the background image *
grab(O); /* off the screen area. Scroll 0 brings ir *
gccharo; /* back. I have used the sorreg function inscoad *
scopgrab(l); 1* of scroll because of the problem w~ith defini- *
sacrog(XSPIN,0);* /* dions in the library. (see rho commenr *
snap(l); /* obtained when linking this program). *
aclear(O,O,16,512,O);
secreg(SCROLL,O);
printfQ'\n\n Subtracting images and locating target.");
oparea(O,256,512,255,O,O,512,255,541);
if (Isolace(2O,8,l6) -- 0) (/* Isolate rarger from surroundings *

princf("\n Could not find carget. Press RETURN ro continue. >)
geccharo;
5K sy -0;
f- fy - 511;

break-,

carea(sx+l,sy+257,fx-sx-l,fy-sy-l,sx+l,sy+lfx-sx-l,fy-sy-1);
aclear(O, 255 ,512 ,256, 0);
break;

case 3:
prinrf("\n ***LOAD IMAGE FROM MEMORY ***)

prinrf("\n\n\n Enter complete file specification.");
prinrf("\n (Eilename.exr;version)\n\n >)
scanf('Ils", name);
C2(O)-1\1
srrcat(t2, magedir);
srrcac(t2.name);
prinrf(1"%s\n" , 2);
prinrf("\n\n\n Loading file...");
if (readim(200,30,200,200,t2,"nocomm") -- 1)

prinrf("\n\n\n File not found.");
prtco;

else text(200,1O.,l.1200,"\O)
nf - sx - sy - 0;
fx, - fy - 511;
break;

case 4:
rl(O] - \;
strcat(tl, imagedir);
printf("\n Will save ******ENTIRE****** screen as 8-bit, image in

printf(11 pixel data base.\n\n\n Enter name (including EXT)");
printf("/n (Enter Quit to exit)\n\n>1");

99

scanf("Is", name); 1* I want to make sure chat the DBASE */
if(scrcmp(naze,"QuLt\0") -- 0) break;
scrncat(cl, name,ll);]* directory is not touched by this save. */
printf("\n\n\n\n Saving image...");

/* Hence the directory name is *1
saveim(O,0,511,480,O,tl,"nocomm"); /* not allowed co vary.
break;

case 5:
printf("\n Select camera port (0,1 or 2) >");
scanf("%d",&cam);
if (cam -- 0 II cam - II cam - 2)

setcamera(cam);
break;

case 6:
printf("\n\n ***** CMERA CHECK *****\n\n");
grab(O);
prtc();
stopgrab(l);
nf - sx - sy - 0;
fx- fy - 511;
break;

case 7:
initialize();
nf - sx- sy - 0:
fx - fy- 511; **/
sclear(100); /* using 100 gives a clean screen that is not too */
break; /* dark to tell whether the monitor is on/off

case 8:
printf("\n ***** LOAD IMAGE FROM MEMORY*****");
printf("\n\n\n Enter complete file specification.");
printf("\n (filename.ext;version)\n\n >");
scanf("%s", name);
c2[0] - 1\0';
scrcat(t2,imagedir);
strcat(t2,name);
printf("%s\n",t2);
printf("\n\n\n Loading file...");
if (readim(O,0,511,480,t2,"nocomz") - -1)

printf("\n\n\n File not found.");
prtc;

else text(200,10,0,1,200," \0");
nf - sx - sy - 0;
fx - fy - 511;
break;

default: /* This is to prevent accidently leaving it on. */
break;

100

manu30 1* 402 *

char temp(80),ch(80),t0f801;
int versionj;

for (;;)

clsQ);
printf("\n*** DEMONSTRATION *****\n"):
printf("\n O:RETURN TO MAIN MENU");
printf('\n l:IDENTIFY A PERSON");
printf("\n 4:TOTAL SYSTEM\n\n\n\n\n\n~i)");

scanfQ~d" ,&option);

switch (option)

case 0:
return;

case 1:
display(ilist,k,6);
printf("\n\n ** IDENTIFY A PERSON ***)

printf("\n\n Enter person's name (or Quit). >");
scanf(Q'%s" ,temp);
if(strcmp(temp,,"Quit\O") - 0) break;
printf("\n\n Enter version number. >");
scanf('1%s" ,ch);
princf("\n1');

test - -1;
for (j-1; J<(k+.); J4-+)

if (strncmp(ilist~j].name,temp,ll) - 0)
if (ilistfj].num - (ch(Oj - '0'))

t3(O] - \;
strcat(t3, imagedir);
strncat(t3,ilistrJj .name,ll);
strcat(t3, ".m;O;
strcat(t3.ch);
test - J
j - k + 2;

if (test - -1)
printf('\n\n Image file not found.");
prtcO);

else
nf - sx - sy - 0;
fx - fy - 511;

101

sclear(0, 1);
readizn(200, 30,200,200. c3 ,"nocomm");
cext(20O, 10,0, 1,200,cemp);
recognize(test);

break;

case 2:
afrmo;
break;

de fault:
break;

102

static int pix,avg,diff.neighn~threshold,ne,nngnm; /* 469
static int col(SI.2J;
struct image(

int data(512);

struct feat(
int sx~sy, fx, fy,xcenterycencer~pix,xsize,ysize,used;

struct w~hole(
int x,y,dx,dy,lcye,reye, teye,beye,tnose,cmouth;
int center,xellipse,yellipse~radius;

static struct image pic(SI2),norm(5l21,temp(5l21;
static struct feat eye[1OOJnose(lOOI,mouh1O0j;
static struct whale face(lO);

inc facemap() /* 485 *

int i,j,k,l;
char narme(3OJ;

del();
CISO;
printf("\n processing image...");
bright normo;
ne - nn - nm - nf - 0;
feattiremapo;

for (i-I; i<ne; i++)
if (eye(il.used - 0)
for (Q-i; j<ne+l; J++) (/* look for a matching eye *
if (eye(j].sx > eye~ij.fx && eye(jI.used - 0) (1* try eyefjl *
if (abs (eye[j]. pix - eye [i]. pix) < eye[j I. pix/2) (1* pix numbers *
if (eye(J.ycenter > eye(il.sy && /* okay *

eye(jI.ycenter < eyefi].fy) (1* close in height *
if (eyeJI.sx < eye~iJ.fx+2*eye[iJ.xsize) (* near enough *
for (k-i; k<nn+l; k++) (/* look for a nose *
if (nose~kj.sy > eye[ij.fy && nose(k).used - 0)(

/* try nose (k] *
if (nose~kI.xcenter > eye(iJ.sx &&

nose~k].xcenter < eyefj].fx) (/* between eyes *
for (1-1; l<nm+l; 1++) (/* look for a mouth *
if (mouth(lJ.ycenter > nose(kJ.fy &&

mouth[iI.used - 0) (/* below nose *
if (mouth~ll.ycenter < eye~iI.fy+4*eye(i].ysize)(

/* near enough *
if (mouth~lj.xcenter > eye(i].sx &&

mouth~l].xcenter < eye(jJ.fx) (/* between eyes *
nf - nf+l;

/* all features found and conditions met for a face. *

103

eye(iIuscd - eye(j).usod I
nose(kJ.used -rnouth(1.j.used -1;

faice(nfI .dx 9*(eye(Jj .xcencer -eye(ij .xcencer)/4;
face(nf).dy -2*(nmouchtlj.ycencor - yeli).sy);
face(nf) .x - (eye(j I.xcenter+eye(LJ .xcenter)/2

. faceinfJ.dx/2;
face(nfl.y -mouth(lJ.ycencer - 4*face(nfl.dy/5;
face(nf).lenye -eye(L).sx -face(nfl.x;
face(nf).reye - eye(j).EK - face[nf).x;
face(nf).teye -(eye(ii.sy + eyefj)J.sy)/2 - face~nfj.y;
foce(nfl.beye - (eye(i).Ey + eye(Jj.Ey)/2 - face(nfj.y;
face(nfj.tnose -noselkJ.sy - fuce(nfj.y;
face(nf).cruouth -mouth(l).ycencer - face(nfl.y:
face(nfj.center -face(nf).dx/2;
facelnfl.xellipse - face(nf).dx/2 + face(nf).x;
face(nfl.yellipse - Eace(nfj.dy/2 + face(nf).y;
face[nfl.radius -face(nfj.dx;
circletface(nf) .xellipse~facejnfJ .yellipse,

face~nfj .radius,1,2,255);
rec?angle(eye(i).sx-l,eya(iJ.sy-1.,eye(J.EK - eye(i).sx,

mouth(l).ycenttr - eye(i).sy,255);
1 - k - j - 500;

if (nf -0) return(0);
printf("\n Saving brightness normalized faces to disk...");
for (y-0; y<480; y++) whline(O,y,512,norm(yj.daca);
narnefO) - \;
strcat(naae, "bnorm. mg\0");

for (i-1; L<nf+l; i+s+)(
printfQ'\n %s%s~d",name,";",i);
/* changed 255 to 0 for fill between ellipse and rectangle *
circle(facef il .xellipse,facef i).yellipse,face(iJ .radius,1,2,255);
rcctangle(face(iI .x,facef i) .y,face~i] .dx,face~i) .dy,255);
fill(facefi] .x+l,face(i] .y44,5O,255);
fill(face(LI].x4-l,face(iI .y+l,O,255);
fill(face~iJ .x+face~iJ .dx-l,face(iI .y+face(iI .dy-1,50,255);
fill(face~i) .x+face(iJ .dx-l,face(iJ .y+face(iI .dy-l,0,255);
ftll(facefi) .x+I,face(iJ .y+face(i] .dy-l. 50,255);
fill(facefiJ .x44,face~iJ .y+face(iJ .dy-l,0,255);
fill(facefi] .x+face(i] .dx-l,face(i) .y+1,5O.255);
fill(facefiJ.x+face~i].dx-l,face[iJ.y+1,0,255);
circle(face(i].xellipse,face(i].yellipse,face(iJ.radius,1,2,0);
rectangle(facefij .x,face(iJ .y,face(i] .dx,face[iJ .dy,0);
saveim(face(i).x,face[iJ.y,face(iJ.dx,facei.dy,0,name,"nocomm");

printf('\n Also saving original faces ... 1);
for (y-0; y<480; yi-+) whline(0,y,512,temp~y] .data);
name40] - \;

104

for (i-I.; L<nf+1; L++)

reccangle(facet U .x, face(ij.y, facc(LI.dx, f'4ce(i) .dy,255);
saveim(face(ii.x,face(J.y,EaceUj.dx~cface(i).dy.O~name,"ndCotw-);

recurn(l);

105

feacuremap() 1* 563 *
I

inc fLiu.cesc,ymin,ymax,xnlax,i,j~dy,dx,ycesc,xcesc~bx;
char cype;

for (y-.sy+14; y<fy-14; y++) / * begin and and wich 14 pixal mrgins *
cost 0;
for (x-.sx; NK<fx-l4; x++) / * see if line is couching cop of object *
if (pic(y+tI.daca(xJ 0) / * chese checks are done like this *
if (pic(y).daca(xI) 100) / * for speed. *
if (piclyJ.dacalx-lj+pic(y).data[x+1J - 200)
if (pic(yJ.dacalx-2)+pic(yJ.daca(x+2) -~200)
if (pic(yJ.datalx-31+picly).datatx+31 --200)
if (pic(yj.data(x-41+pic(y;.dacax+.J 200)
if (pic(y).daca~x-5j+pic(y).datafx+5J 1 200)
cest -1;
bx -x - 50;
if (bx < 14) bx 14;
x 512;

if (test -- 1) / * okay, for this line find the objecc(s) *
for (x-bx; x<498; x++)
cost - 0;
type - ll
if (pic(yI.data(xJ -- 100) (1* possible corner *
ymax - y + 40;
if (ymax>479) ymax - 479;
for (i-y; i<yniax+l; i++) /* how far is line white? *
if (pic~i).daca(xJ - 0)
ymax - 1;
i - 512;

if (ymax > y+l)
for (i-y+l; i<ymax; i++)
if (pic~i].data[x+lI - 0) 1/* something touching line *
dy - i
test - 1;
i - 512;

if (test -1)1 /* left side ok *
xmax - x + 50;
if (xmax>498) xmax -498;
for (i-x; i<xmax+l; i++) (* how far is line white? *
if (pic(yJ.data(iJ -- 0)
xmax - i-I;
1 512;

test -0;

106

if (xMax > x+l) C
for (i-x+l; i<xmax; i++: I
if (pic~y+l].data(i] -- 0) C /* something couching line */
dx - I;
test - 1;
I - 512;

if (test .- 1) /* at the border of unknown object */
tesc - 0;
while (dx < xmax+l 6 dy < ymax+I && test -- 0) 0
ycest - 0;
while (dy < ymax+1 && ytesc -- 0) (/* cry to go across to dx */
yCOsC - 1; /* assume success */
for (i-x; i<dx+l; i++)
if (pic(dy].datai(L -- 0) ytesc 0;

if (ycest -- 0) dy - dy + 1;

if (ycest -- 1)
xtest - 0;
while (dx<xmax+l && xtesc -- 0) [/* try to go down to dy */
xtest - 1; /* assume success */
for (i-y; i<dy+l; i++)
if (pic(i].data(dxl - 0) xtest - 0; /* failed */
if (xtest - 0) dx - dx + 1;

if (xtest - 1) { /* recheck present dy */
for (i-x; i<dx+l; i++)
if (pic(dy].data(i] - 0) ytest - 0; /* failed */
if (xtesc - 1 && ytesc - 1) test - 1;

if (test -- 1) { /* successfully blocked in object */
if ((dy-y) > 3*(dx-x)) type - 't'; /* too tall and thin */
if ((dx-x) < 7) type - 't'; /* too small */

if (test - 1 && type - 'u')
fill - 0;
for (j-y+l; J<dy; J++)
for (i-x+l; i<dx; i++) if (pic(j].data(i] - 0) fill++;
if (fill < (dx-x)*(dy-y)*3/10) test - 0; /* less than 30% solid */

if (test - I && type - u') I
if (dx-x > 2*(dy-y)) (/* possible mouth */
rectangle(x,y,dx-x,dy-y,0);
type - 'm';
nm - nm + 1;
mouth[nm].xcenter - (dx+x)/2;
mouthrnm].ycenter - (dy+y)/2;
mouth[nmI.sy - y;
mouth[nm].used - 0;

107

if (test -- I& type !- It)
fll) - 0;
ymax -dy+(2*(dy-y)/3):
if (YMAX < 480) (
for (J-dy44; J<ymuax; J++) /* chkc for space below *
for (i-x; L<dx; i++) if (pic(j).data(iJ 0) fill++;
If (fill<(ymax.dy+l)*(dx-x)*10/100)

/* less than 10% of areA filled *
type - ''
ne - no + 1.;
eye(ne).xcencer -(dx+x)/2;
eyalnei.ycencer -(dy+y)/2;
eye(ne).pix - (dx-x) * (dy-y);
eyc(nei.xsize -dx - x
eye(nel.ysize -dy - y
eye(nel.sx - x
eye(nel.fx -dx;
eyelne).sy -y
eye(nej.fy -dy;
eye~nel.used -0;
reccangle(x,y,dx-x,dy-y,0); /* (lxi <- size <- 20x20) *

fill -0;
ymin -y-(dy-y);
if (ymin > 0) (
for (j-ymin; j<y; J++) /* chk for space above *
for (i-x; i<dx; i++) if (pic(jJ.data(iI - 0) fill++;

!.f (fill < (y-ymin)*(dx-x)*lO/100)
/* less than 10% of area filled *

nn - nn + 1.;
noseinnl.xcenter - (dx+x)/2;
nose(nn).ysize - dy - y
nose(nnl.fy - dy;
nose(nn).sy - y
nose(nnl.pix -(dx-x) * (dy-y);
nose(nn).used -0;

rectangle(x,y,dx-x,dy-y,0); 1* (lxl <- size <- 20x20) *

return;

1* 767 *

108

scatic double cray(65)(65Jicrayr(65)(65)1crayi(651651,rinp(651;
scatic lin: ix.Iy;

gesca1c(m) /* Values range from 0 to 128 *

inc m:;/ m -face number *

int x~y,ioi:

lino(256,0,256,512,0);
line(0,256,512,256,0);
line(384,0,3Sf4,512,0);
line(128,256,l28,512,0);

/* lefc half: whole head *
carea(sx,sy,facelmJ .dx/2, face(mj .dy,270,sy, face(mJ .dx/2, face(mJ .dy);
1* rishc half: whole hand */
carcA (sx+face (i). dx/2,sy~face (in)dx/2 face (i) .dy,

400,sy, face (m) .dx/2, face (m) .dy);
/* cop half: cop to rcnose */
carea(sx,sy~faca(mJ.dx,face(m).tnose,15,sy+256,face(m.dx,face(m)rtnose)

/* internal features *
carea(sx+face(tul.leye~sy+face(ml.rteye,face(m).reye-face(ml.ley,

face(m) .cmouth-face(m) .reye,
140+face(m). leye,sy+256+face Im) . rceye, face (m). reye- face (m). leye,

face(ruj.cmourth-face(mJ .teye);
/* left internal features */
cnrea(sx+face(n) .leye,sy+face~mJ .eeye,EacelmnJ.center-fsce(mJ .leye,

face(n) .ciouch-face(mJ .ye
270+face(n) .loye,sy+256+facelmJ .ceye,facelmj .cencer-face(m) .leye,

facefmJ .cmouth-Eace(m] .teye);
/* bottom half: tnose to chin */
carea(sx,sy+facefm).tnose,face(mJ.dx,face(mj.dy-facelmJ.tnose,

400,sy+256+face4m).cnose~face(mJ.dx,face(m).dy-facelm.tnose);

Iine(sx~sy,sx+face(mJ .dx,sy,O);/*o/
line(sx+face(mJ .dx,sy~sx+face~m) .dx,sy4-facefmj .dy,O); /*right:*/
]ine(sx+face~m) .dx,sy+facefmj .dy,sx,sy+face(nJ.dy,0); /*botcom*/
line(sx,sy+facelmJ .dy,sx,sy,O); /*left*/
line(sx,sy+facefm).teye,sx+face(m).dx,sy+face~mlazeye,0); /ty*
line(sx,sy+face~mJ .cmouth,sx+facelmJ .dx,sy+Eace~mJ .cmouth,O); /*cmouch*/
line(sx,sy+face~mJ .tnose,sx+face(mJ .dx,sy+face(mJ .rnose,O); /*tnose*/
line(sx+face~m).leye,sy~sx+face~mJ.leye,sy+facefm).dy,O); /*leye*/
line(sx+facefmj .center,sysx+face(m) .center,sy+face~m) .dy,O); /*cencer*/
line(sx+face(mJ .reye~sy,sx+face(mJ .reye~sy+face[m) .dy,0); /*reye*/
ix - face~m).dx/2;
iy - face~m).dy/2;

printf("\n calculating fft for window 1.");
clear Crayo; 1* left half: whole head *

109

for (y-sy; yetsy+face~mJ.dy; y+-2)
for (x-.270; x<270+face~mI.dx/2; x+-1)

crayr~x.269)(1.+(y-29)/2' -, (double) brpixel(x,y)/255;

ffc2(crayr,crayi,64,O);
sav6 ffC(O);

princf("\n calculating fft for window 2.");
clear~crAyO); /* right half: whole head *
for (y-.sy: y<syftce(m).dy; y4'-2)

for (x.-400; x<400+face(m).dx/2; x+4l)
crayri (x-399)+facefmj .dx/4j (1+(y- 29)/2) (double) brpixel(x,y)/2-55;

ffc2(crayr~crayi,64,O);
Sava ffc(l);

princf("\n calculating Eff for idLndow 3.");
claarcrayo; /* cop half: cop co tnose *
for (y-sy+256; y~sy+256+facefmj.cnose; y+..l)

for (x'-15; x<15+face(m).dx; x+'-2)
crayr~t+(x-14)/2j (y-285J -(double) brpixel(x,y)/255;

Mf2(crayr~crayi 64.0);
save EC (2);

printf("\n calculating Eft for window 4.");
clear cray0; /* internal features *
for (y-sy+256;, y<sy+256+face(m).cmouth; y+-2)

for (x-.140; x<140+facefmj.reye; x+-2)
crayr(l+(x.139)/2j (l+(y-285)/2) - (double) brpixel(x,y)/255;

I
ffc2(crayr,crayi,64,0);
savejfft(3);

printf("\n calculacing fft for window 5.");
clear-crayo; /* left internal features *
for (y-sy+256; y~sy+256+face(mJ.cmouth; y+-2)

for (x-.270; x<270+facefmJ.dx/2; x+-l)(
crayr~x-269111+(y-285)/21 - (double) brpixel(x,y)/255;

fft2(crayr,crayi,64,0);
save fft(4);

printf("\n calculating fft for window 6.");
clear-Crayo; /* bottom half: tnose to chin *
for (y-sy+256; y<sy+256+facefmj.dy; y+-l)

for (x-400; x<400+face(m].dx; x+-2) (
crayrfl+(x-399)/2J (y-285j - (double) brpixel(x,y)/255;

fft2(crayr,crayi,64.O);
save C Ct(5);

return;

110

savejffc(index)

inc index;

inc x,y:

for (X'O:X<S;%44)
for (y-0;y<$;y++)

ilisc(0j.fcacure(indax)(xj(yJ 0.0;
for (x"0;x<3;x++)

for (y."0;y<3;y++)
i)ist(0).featurelindexl(x+21(y+2) - crAyr(xI(y);

for (x.O;x<2:x++)
for (y-0;y<2;y-+)

ilist(0J.feature(indexj(x+3jfyJ - crayr(xi4)(y+62);
for (x'.0x<3;x++)

for (ywO;y<2;y44)
ilist(0J.feacuro(index)(x)(y) - crayi(2-y)(2-x);

ilisciO).feature(indoxj(0j(21 crayi(0I(21;
ilisc(0j.feature(index)(1)(2) - crayi(0J(l);
for (x-0;x<2;xi4)

for (y-O:y<2;y++)
Ulisc(0J.eaureindex)[1-y)f4-x) crayi~x+62fly+lI;

return;

clear-cray()

inc x,y;

for (y-0; y<65; y++)
for (x-0; x<65; x-4)
cray(xJ(y) - 0.0;
crayr(xJ[yj - 0.0;
crayiixlfyj - 0.0;

return;

ffc2(picc. Lpicc,n,dir)

double picct65SHO5);
double ipicc[651(651;
inc n;
inc dir;

double pic(651;
double ipic(651;
inc Lij;

for (i '- 0; 1 < n; i++)

for (J - 0; J < ni; J++)
I
pilj+l) picc(i)(jI;
ipiclj+ll Lpicc(ij(jJ;

Eft(pic, ipic~n,dir);

for (j - 0; j < n; J++)

picc(ij(J) -pic(j+lj;

ipicc(iI(jI iplc~j+lJ;

fo)J-0 ;J+

for (0; < n; i++)

picfi+l) -picc(lJ(jJ;

ipic(i+lj iplcc(iI(jI;

fft(pic. ipic,n,dir);

for (i - 0; 1 < n; i+4.)

picc(i)fjl pic(i+1J;
ipicc(1j(j) -ipic(i+lJ;

recurn;

112

dEc(er, fLn, dr)
double fr(65];
double fi(65] ;

inc n;
inc dir;

double cr-O, ct.O;
double wr..O, i-0:;
double o-O, a.O:
inc L-O, Ji-O;
inc mrO;
inc 1.O;
inc k-O;
inc m-0, nn-O;
inc step-O;

if (dLr < 0)
for (1 1.; 1 ni-l; L++)

EL(i) -fEL[;
mr - 0;
nn-n - ;
for (m- 1; m <- nn; m++)

I - n/2;
while (1 + mr > nn) 1. - 1/2;
mr - mrl + 1;
if (r r > m)

(

cr - Er(m+l);
frfm+l] - fr(mr+l]:
fr[mr+ll - tr:

ci - fi[m+];
fiL(m+l) - fi(mr+lj;
fi(mr+l) - ti;
)

1 - 1;
while (1 < n)

step - 2*1;
el - 1;
for (. - 1; . <- 1; m++)

(
a - 3.1415926535 * (double) (1-m)/ el;
wr - cos(a);
wi - sin(a);
for (i - m; i <- n; i +- step)

j -i + 1;
k i;

113

tr- r*frlj) (j
t- wr*fifj) + wE*fr(j);

fr(J - r(k) r-
fi(j) - fi(k) -t;

fr(k) - fr(k) + t.r;
filkJ fi(k) + cl;

I step;

if (dir < 0)
for ZI- 1.; 1 < ndl: i'4)

fr~iI fr(ij/n:

return;

/* 697*

114

brigheti:orm()
/* norm will contain brightness normalized scene *
/* (bright areas set to 128, dark .2reas- 128-diff *

mnt ij; /* pic will contain the dark objects of the scene *
/* (uses variable threshold, binary output) *

sx -sx - 14;
if (sx < 0) sx 0;
sy - sy -14;
if (sy < 0) sy - 0;

f- x+ 14:
if (fx > 512) Ex -512;
fy - fy + 14;
if (fy > 480) fy -480;
for (y-0; y<480; y++) for (x-0; x<512; x++) norm~y).data(x) 0;
for Qy-0; y<480; y++) rhline(0,y,5l2,pic~yI.daca);
y - sy;

for (i-sx; i<fx; i++)
col(ij 0; /* setup all columns for first y value *
for (J-y; J<y+30; J++) col~i) +- pic(jl.data(i);

for (y-sy+l; y<fy-30; y4-+) / * now all columns calculated faster *
for (i-sx; i<fx; i++) col(iJ +- (pic~y+29).datali) - pic[y-lj.data(L));
x - x
neigh - 0; /* setup first neighborhood *
for (i-x; i<x+30; i++) neigh +- colf i);
for (x-sx+l; x<fx-30; x++) (1* now all other neigh calculated faster *
neigh +- (col(x+291 - col(x-1));
avg - neigh/900;
pix - pic[y+141.data(x+14);

if (pix < avg) norm(y+141.datafx+141 - 128 - (avg - pix);
else normly+141.data~x+14) - 128;
if (norm~y+141.data(x+141 < 0) norm(y+141.data(x-14] - 0;

/* added variable threshold */
threshold - 80*avg/l00 + thr; /* add 7 because noise is +/- 7 *
if (pix < threshold) temp~y+14J.data~x+14] - 0; /* dark-0 *
else temp(y+14].data~x+141 100; /* else light-lOG *

for (y-sy+14; y<fy-l4; y++I) (/* cleanup noise *
for (x-sx+14; x<fx-14; x4-+)
pic(yJ.data~xj - CetpfyJ.data~xJ;
if (temp(yj.data(x] - 0)
if (temp(yI.data(x-l]+temp(y.data(x+l+temp(y.datafxi2] > 0)
pic(y].data(xJ - 100;

for (y-sy+14; y<fy-14; y4-+)
for (x-sx+14; x~fx-l4; x++I)

115

if (pic(yI.datatx) 0)
if (pic~y).datatx-1I+pic(y-1.J-daCa(K)+Pic(y+lJ.daca(x)+

pic~yJ.daca(xilJ > 200)
pictyl.daca(x) - 100;

for (y-fy-14; y>sy+.4; y- -)
for (x-fx-14; x>sx+14; x--)
Lf (pic(y).data(xj - 0)(
if (pic(yI.data(x-lJ+pic(y-lJ.data~xI+picly+lJ.daca(xj+

pLc(yl.data(x+lj > 200)
pic(yJ.data(xj- 100;

for (y-0; y<480; y++) rhline(0,y,512,cempj.daca);
for (y-0O; y<480; y++) whline(0,y,512,pic(y).data);
rccurn;

116

concorihance (i)

Lnc m; /* face number *

int X,yoz;

scaclchausO);
seclut(RED,S);
hisceq(RED,5,face(mI .leye+sx+l,face(m)J.beye+sy,

facelmJ.dx/2 -2,Eace(mil.cmouch-face(m).boye);
rap)lu(RED,,O,O,256,256);
linluc(RED,5);

I inlour(BLUE,5) ;

for (y-sy; y<sy+face(mI.dy; y++) / * threshold result *
for (x-sx; x<sx+facelin).dx; x++)

z-brpixel(x.y); 1* leave dark areas but *
if (z < 50) bwpixel.(x,y,z): /* make skin pure white *
else bwpixel(x,y.255);

return;

11.7

scale (i)

int mn;

int fact;

Lf ((fx-sx)/l5O > (fy-sy)/l50) fact l50/(fx-sx);
else fact - 50/(fy-sy);
if (fact > 1)
repzooin(sx,sy,fx-sx,fy-sy.SX,sy,200,200,fact,fct);
facelmi.dx - face(inJ.dx * fact; /* update fAce(in).lines by 'fact' *
facelinJ.dy -face(inI.dy * fact;
face(ml.loye - face(inj.laya * fact;
face(m).reye -face(in).reye * fact;
face(ij.::ye - face(inJ.ceye * tact:;
face(mi.beye face~in).baye * fact;
face(nij.tnose facelin).tnose * fact;
face(inj.cmnouth - face(inJ.cinouch * fact;
face(inJ.center -face(:nI.cen::er * fact;
fx - (fx-sx)*fact + sx; /* update fx,fy by 'iact' *
fy - (fy..sy)*fact + sy;

aclear(O,O,512,sy,255);
aclear(O,fy,512,480-fy,255);
aclfar(O,sy-l,sx1 fy-sy+l,255);
aclear(fx,sy-1,512-fx,fy-sy+1,255);

return;

118

faceroc(vers ion)

int version;

char ch(801,t2(30j,t3(80),e4(301,tS(80);
nt i,wmwl,w211,m,ntpudx,dy;

If (Of 1- 0)
CISO;
printf(" trying to recognize faces found... 1);
for (m-1; m<nf+l; m++)
c2(0) - 1\01; 1* create file naimes for face 4 m *
C4(0) - \'
scrcac(t2, "bnorm. img;\0");
strcat(t4,"orig.img;\0");
c3[0) -m + '01;
t3(lJ - \;
strcac(c2,t3);
scrcat(t4,c3);

sx-60;
sy -30;
printf("\n ts" ,t2);
sclear(0,1);
readim(sx~sy,200,200,t2,"nocoim"); /* display bright norm face *
1 - sy;
while(brpixel(sx,l) 1- 0) 1++; 1* get fx,fy values *
fy I - 1;
1 sx;
while(brpixel(l,sy) 1- 0) 1++;
fx - 1 1;
dx - fx -sx;

dy - Ey -sy;

1* cont enhance (i);
scale(n); */
text(70,l0,0,l,0.t2);
gestalt(m); /* gestalt values put in ilist[OJ *
initializeo;
sclear(0, 1);
readiin(200,30,200,200,t4,"nocommi"); /* display original face *
text(200,10,0,l,200,t4);
if (version - 1)(
printf("\n Save in dbase? (YIN) >)
scanf(mts" ,ch);
if (ch(0J - ly' 11 ch(01 - 'Y')

printf("\n epncer name of subject (up to 10 letters) \n>");
scanf("%s" ,t3';
p - 0; /* highest existing version # for this subject *
for (n-I; n<k-l; n++)(
if (strncrup(ilist[n].naine,t3,ll) -- 0)
p - ilistlnj.num;

119

k -k + 1;
p -p + 1;
ilist(k].name(Oj - \;
strncat(ilist(k) .namet3,ll);

for (w-0; w<6; w++)
for (wl'.O; wl<5; wI.++)

for (w2-0; w.2<5; w2++)
ilistjk).featurew)(wlJ[w2j ilist(OJ.feature~w)(wlIjw21;

others-changed - I'
C5(0O - O,
strcat(t5, imagedir);
scrncac(t5, ilist~kj .narne,l1.);
strcat(c5,". img;\O");
saveim(200,30,200,200,O,c5,"lnocomm"l);

else
if (m < nf)

printf("\n Forget about: rest of)
printf("faces atid return to main menu? (YIN) >)

if (ch(O] -- y ch(O) .-- YI)
return;

recognize(O); 1* pass in gestalt values of ilist(OJ *
delete(t2);
delete(t4);
CISO;

else
printf("\n face not found.");
prtco;

nf - sx - sy - 0;
fx - fy - 511;
return;

120

scatic inc resulcslf2571(5J;
static in lisc[lO1l; /* list of ides ordered by distances in 1lsc2 */
stacic double c(lO1],lisc2(lO1l; /* total distances (for all windows) */
static double v(O11(7); /* v[id)(w] - distance from person xid to

unknown person for window xw (Russel, 1985:4-40a) */

recognize(num) /*from REMID.FR 06/03/86 by R. Russel */

Lnc num; /* the position in ilisc(of gestalt values to use. */

char c8(80);
double gix,gux,sigixc,most;
inc id,w,x,y,mn,j,confid,cesc;
double p(7) - (1.O,l.O,l.O,l.O,l.O,l.O,6.0); /* window performance factors

(update after training and resting with sufficienc samples */
/* note: p[O1 is used for cotal of factors */

printf("\n\n\n Now crying to recognize subject in cop half of screen.\n");
princf("\n Presently trained wich %d subjects.",(i/4));

for (w-O; w<6; w++)
for (id-i; id<(i/4)+l; id++)
m - id*4 - 3;
c-O;
for (x-O; x<5 ; x+4r)

for (y-O; y<5; y++)
gix - ((double) (clist[mJ.feature(wJ(xJ[y) +

tlist[m+l].feature(wI(xJ(y] +
tlist(m+2).feature(wl[xI(yJ +
tlist(m+3].feature[w][xJ[y])/4.0);

gux - (double) ilist(num].feature(w)(x](yJ;

/*

VOTING SCHEME

Voting can be done on four consecutive test feature sets
(consecutive is ilist). Substitute this assign statement
for the variable gux.

gux - ((double) (ilist[num].feacure(w(x][y] +
ilist[num+lJ.feature[w][x][yJ
ilist[num+2J.feature[w][x[y]
ilist(num+3J.feaeure[wJ[xJ[y])/4.0);

sigix - ((double) (abs(gix-clist(ml.feature(w]fxi[y])*
abs(gix-tlist[m].feature[w[x (yJ)+

121

abs(gix-clis(mnI4J.fecure(wJ(x)(y)*

abs(gix-1.ist(rn+2j . cure(w (%) (y))*
abs(gix-clisc(m421 .featuiro(wJ (x) (y))4.
abs(gix-list(rn*3j. feAture(wl (xj y))*
abs(gix-clistlm*31.feAture(wJ(xJlyl)))/4.O;

sigix -sqrt(sigix);
If (sigix < .5) sigix .' .5;

c +- (gix-gux)*(gix-gux)/(4*sigix*sigix);

v(idl(w) - axp(-..*c/10000) *p(wI;

for (id-I; id<(i/4)+l; id++)
t(id) .- 0.000000001;
for (w-0; w<6; w++)

t(idj +- v(idj (wI;

t(id) - tfid)/p(6);
/*max c~id) - 1.0 when distance from id to unknown*/

/* individual - 0.0 *
1* princf("\nSorting Distances %2d".i); */

/* now have all distances ordered by ido, need to order idos by distc*
for (mu-1; mn<101; m-+)

list(mJ 0;
list2[mj 0.000000001;

for (rn-1; m<((i/4)+I) && m<16; mn++)
most - 0.000000001;
for (J-1; J<(i/4)+l; J++)

if (CJl > most)
most - j;
n J;

list(m] n; /* id $*
list2(m] - t(n]; /* distance *
t~n] - 0.000000001;

/* now have ordered list of candidates, need to display them *
test - 0;
if (list2fl] > 0.001)

printf("\n\n Candidate Distance");
1* printf(" Confidence"); *
for (rn-1; m<((i/4)+l) && m<16; m+i-I)

122

if (lisC21MI > 0.001)
if (m -1) (

princf("\n Ist Choice: ')

t8[0) \;
scrcac(t8 ,dbasedir);
scrcat(c8,clistlisc(t)*4 3).ruime);

readim(50, 286 ,200, 200, t , "nocomhz");
cext(50,266,0,1,200,clistflisctllJ*4 -3).name);
tast 1

if Cm -2) q
prinef(w\n 2nd Choice:")
CS(0) \1
scrcac(c8,dbasedir);
strCAt(c8,clisc(listj2)*4 - 3).name);

readim(200,286,200,200,8,"nocmu");
cext(200,266,0,1.,200,clistllist(21*4 -3).nante);

test '- 2;

if (m ~- 3)
printf("\n 3rd Choice:")
t8(0) - \;
scrcat(t8,dbasedir);
scrcat(t8,tlist~lisc(3j*4 - 31.name);
strcat(t8,".pic\0");
readim(350,286,200,200.t8,"nocomm");
cext(350,266,0,1,200,tlist(list(3J*4 - 31.name);
test - 3;

if (in - 4) printf("\n Others:)
if (mn > 4) printf("\n

1* conE id - based on distance of this candidate and
distances to next candidates */

printf("%lls %f",tlist~list~mJ*4 - 31.naine,list2(rn));
1*printf(" %d",confid);*/

else mn-200;

if (test - 0)(
printf("\n\n Could not find any close enough candidates."):
printf("\n The computer has never seen this person before.");

if (test < 3 && test 1- 0)
printf("\n\n Could not find any more close enough candidates so");
if (test -- 1) printf("\n only displayed 1 picture.");
else printf("\n only displayed 2 pictures.");

prtcO);
return;

123

int isolace(thresh,modesize) ** works on cop half of screen only! */

inc thresh; /* threshold for dtection of target *,
inc mode; /* 6 bit or 8 bit imaga */
inc size; /* detcrmines minimum size of target and affects speed. */

/* size is either 16 or 32 pixels. */
tnc x,y,z;

sx - sy - fx - fy - -1; /* Find top. *************************** */

for (y-siza-l; y <- 255; y-y+si=e)(/* This subroutine finds location */
for (x - 0; x < 511; x-x+size)(/* of a moving object. If there is*/
z - brpixol(x,y); /* no moving object, or ic is coo */
if (mode -- 6) z - z & 63; /* small then (0) is returned. If*/
if (z >- thresh) (/* an object is found then sx,sy, */
sy y-(size-): /* fx,fy sre set and (1) is re- */
x - 512; /* turned. This is done so that */
y - 512; /* all future work done on a scene*/

/* is done on a greatly reduced */
if (sy .- -1) return(0); /* area of the scene and hence is */
for (y-256-size; y>(sy+size-1); y-y-size)(

/* done faster. Thresh is set to*/

for (x - 0; x <- 511; x-x+size)(/* high enough value to eliminate **
z - brpixel(x,y); /* video noise but low enough to *,
if (mode -- 6) z - z & 63; /* find small brightness differen-*/

if (z >- thresh)(** ces that may occur between a */
fy - y + size-I; /* Find bottom. * moving object and its bkgnd. */
x - 512;
y - -I;

if (fy < (sy + size)) return(O);
for (x-size-l; x <- 511; x-x+size)(/* find left side */
for (y - 0; y < 255; y-y+size)(
z - brpixel(xy);
if (mode - 6) z - z & 63;
if (z >- thresh)(
sx - x - (size-i);
x - y - 512;

if (sx -- -1) return(O);
for (x - 512-size; x > (sx + size-i); x - x - size)(
for (y - 0; y < 255; y - y + size)(/* find right side */
z - brpixel(x,y);
if (mode -- 6) z - z & 63;
if (z >- thresh)(
fx - x + size-i;

124

y " 512;
I))

if (fx < (sx + si:e)) recurn(0):
recurn(l);
I

udefEne AO (shore Lnc)aO(L) /* These are the transfeormacions used in *
xdefina aO(i) (i & OxOO3f) /* the feedback lut for the real CiMe */
xdefine Al (shore Inc)al(i) /* subcraccion demo. This sofetware was */

/* created by using the cootbox*/
adefinO A() ((i & OxOfcO) >> 6) /* program (see FG-1O0 user's /
wdefine D0() (data &- OxffcO; data j- (i & O 003E);)

/* manual chapc 7) */
mdcefin* D(i) data &- OxfO3; data I" ((<< 6) & OxOf€O); I
adefine INPUT 0x6000
wdefine abs(E) (((i) < 0) ? (-(i)) : (k))

xforml(addr, Initial)
unsigned addriniial;

register unsigned shore i - addr;
register shore int data - Lnitial;
Dl(Al);

DO(abs(Al - AO));
recurn((unsigned)datca);

xform2(addr, Inicial)
unsigned addr,inicial;

register unsigned shore i - addr:
register shore int data - Inicial;
Dl(AO);
D0O(abs(A - AO));
recurn((unsigned)data);

125

afrmo(/* A co~mplatcly Auconoaus Face Rccngnicion Machine (M'R.'t)

inc cam;
char acopAnswcr(l];
regiscer unsigned J;

stop I'
cam 9;

wil~he (cam 1- 0 && cam !-' I && cam~ 1-. 2)
princf("\n Select camera port (0.1 or 2) >)

prinf(" ae c...;)

rcsubcrAcc(O);
seccamerA(cam.):
secluc(0,0);
socinmux(6);
for (J-0O; J<0xdQOO; J++) wrice luc(INPUT,j ,xform2 (j , readlu (INPUT, J)));
CIS();
princf(" looking for target.");
snap(l);
snap~l);
while((isolace(8,6,32)) 1- 1) snap(l);
printf("\n found target, acquiring 8 bit imago.");
inicializeo;
seccamera(cam);
waicvbo;
snap(l);
nf- sx - sy - 0;
fx- 511;

fy -255; /* presently isolate() only looks for target in cop *
if (facemap() - 1) / * half so look for faces in cop half *

printf("\n found ");
princf(" %d" ,nf);
if (nf - 1) printf(" face.");
else printf(" faces."M);
facerec(2);

printf("\n Do you wish to stop? (YIN) >)
scanf("ts" answer);
if (answer[O) - 'Y' answer(0J - 'y') stop -yI

return;

126

del.()

prinf("n~nDeletinig files with reserved namies.");
syscem("delece bnoru. img;*");

/* these names are reserved for facefinder *
system("delece orL&. iwg;*"):

prtc() /* 45*

princf("\n\n Press RETURN co continue. >)

GeccharO);
return;

CIS

princf("\n\n\n\n\n\n\n\n\i\n\n\n~n\n\n");
princfC '\n\n\n\n\n\n\n\n\n\n\n\n\nV'\n\n\nM);
return;

127

int readffcfi1le(name~scr)
char namue();
strucc li1st str(J;

char c, instring(IO);
FILE *ftp;

doubl.e Y;

Ep-fopen(name,"r");
Escanf(Ep. "Ad" ,&h);
for (iud;L<h+l;i++)

Escanf(fp, %1Os,&inscring);
for (J'.O;J<1O;j44)C

scr(I) .nanme(j)-~inscring(j I;

str(iI.name(j] \1
fscanf(fp, "%d" ,&x);
str(L).nu-x

for (J-O;J<6;j++)
for (k-Q;k<5;ks-)(

for (1-0;1<5;1++)
fscanf(fp, "%f" ,&y);
scr(iI.feature(jJ(k)(1) y;

fclose(fp);
return(h);

128

wricefftfile(name,scr,i) /* used to write updated DAT files to disk *
char name() /* when user is dlone modifying the database and sel.ects *
struct: list strfl; /* menu option -0 (Return to main menu). *
ine i;

FILE *fp,*Eopenoi;
int J,k,l~m;

delete(name);
Ep-fopen(name,"w");

fprintf(fp, "%d\n" ,Q
for (J-1); J<(i+.); j++) I
fprintf(fp, "%-10sSd \n", str(j).name, str(j).num);
for (k-0;k<6;k*+)

for (1-0O;1<5;1++)I
for (m-0;m<5;m++)

fprintf(fp, "%3.3f ",scr[jJ.fecurekj(1j(mj);

fprintf(fp, H\nO);

Eprintf(fp, *)

fclose(fp);
return;

129

display(str.k,m) /* m - 6 or 8 depending on * columns desired */
struct list scr(); /* m- 6 for illst displays, 8 for clisc displays */
int k,m; /* I - present column being printed on screen */

/* j counts by 1 or 4 depending on value of m *1

int j,l,n; /* this is due to format of tlisc file; there are */
1 - 0; /* sets of 4 lines all with the same name and the */

if (M -- 6) t /* name only needs to be printed once. */
printf("\n\n The AFRM has the following image feature sets:\n");

printf(" -...................................... \n);

else I
printf(" The AFRM is trained on the following subjects:\n");
printf(" --- \n");

if (m--8) n- 4;
else n - 1;
for (J-l; j<(k+l); j-J+n)
1 -1 + 1;
If (1 -- m)

printf("\n");

if (m -- 6) printf("lllsstd",str(j].name ",", str[j).num);
else printf("%ll." ,str(J].name);

return;

130

copyfile(src. dest)

char src(j,destfl:

char t9(801;

scrcac(i9,11copy \0");
scrcat(c9,src);

scrcac(i9,dest);
princfQ"\n ts",t9);
syscem(t9);
recurn;

131

Appendix E

132

This is FACEFT.C

*This is A subset of FACEDFT that is concerned with
* the Fourier Transform used for the feacure set.

* These routines use a standard two- dimensional
*v Fourier Transform, but calculate only the dc component
* and the first two harmonics.

133

scactc double crayr(20O)(2O0),sinaray(5II3I,cosaray[5)(3),rinpi65j;
static LnC Lx,Ly;

gesica)c(m) /* Values range from 0 co 128 *
inc m; /* m - face number *

inc x~y,i,j;
lino(256,0,256,512,Q);
lino(0,256,512,256.O);
lina(384 ,0,384,512,O);
line(128,256,128,512,O);

/* left half: whole head *
carea(sx~sy,face(m1.dx/2,fAcelmJ.dy,270,sy,face(m).dxc/2,face(mJ-dy);
1* right half: whole head */
carea(sx+Eace m)dx/2 sy, face (m).dx/2,~face (midy,

400,sy, face(m) .dx/2, face(n) .dy);
/* cop half: cop co cnose */
carea(sxc,sy,face(mJ.dx,facefm).tnose,15,sv+256,facelm).dx,face(m).tnose)

/* internal features *
carea(sx+face(mi.leye,sy+facalmJ.teye,face(m).reye-face(mJ.leye,

face(i.cmouch-face(m) .ceye,
140+face(mj .leye,sy'v256+face(m) .ceye,face(m) .reye-face(mJ .leye,

face(m) .cmouth-face(m) .coye);

/* left internal feacures */
carea(sx+face(mJ .leye,sy+face(ml .teye,face(m) .cencer-face~mJ .leye,

face(m]).cmouth-face(ml ceye,
270+facelmJ .leye,sy+i256+face(m) .teye,face(mj .center-face(m) .leye,

face (ml].cinouth-face(mi ceye);
/* bottom half: tnose to chin */
carea(sx,sy+facem).nose~faceral.dx,f.'ce(m].dy-face(nl.tnose,

400,sy+256+face~mJ.tnose,facefmj.ux,face(in).dy-face~mJ.tnose);
line(sx,sy,sx+face(ni].dx,sy,O);/*o/
line(sx+facefmj.dx,sy,sx+Eace(mJ.dx,sy+face~m).dy,O); /*right*/
line(sx+face(mn].dx,sy+face(mJ .dy~sx~sy+face(mj .dy,O); /*bottom*/
line(sx,sy+face(mj .dy,sx,sy,O); /lf*
line(sx,sy+facen] .teye,sx+face(mnJ.dx,sy+facei] .teye,O); /*teye*/
line(sx,sy+face(u].ciouth,sx+Eace(m] .dx,sy+face(ml .cnouth,O); /*cmouth*l
line(sx,sy+face(mnl.tnose,sx+face(m] .dx,sy+facefm] .tnose,O); /*tnose*/
line(sx+face(m].leye,sy,sx+face(mJ.leye,sy+face(mJ.dy,O); /*leye*/
line(sx+face(ml .center,sy,sx+Eace(mJ .center,sy+face(ij.dy,O); /*center*/
line(sx+face(mJ .reye,sy,sx. face(mJ .reye,sy+face[m) .dy1O); /*reye*/
ix - face(m).dx/2;
iy - face(m).dy/2:

printf("\n calculattng fft for window l.");
clear Crayo; /* left half: whole head *
for (y-sy; y<sy+facefm].dy; y+-2)

134

for N~-270: x<27O+face(mj.dx/2; x+-2)
crayr((x-269)/2)((y-29)/2j -(double) brpixel(x,y)/255;

I
fc2(crayr~ t+(x-269)/2, l+(y-29)/2);
save ffc(O);

printf("\n calculating fft for window 2.*):
cloarcrayo; 1* risht half: whole hoad *
for (y-sy; y<sy+fac*(m),dy; y+-2)

for (x-~400; x<400+face(mj.dx/2; x+-2)
crayr((x-399)/21((y-29)/2) -(double) brpixol(x~y)/255;

Ec2(crayr, l+(x-399)/2, l+(y..29)/2);

printf("\n calculating Eft for window 3.");
clear-crayo; /* top half: top to cnoso '

for (y-sy+256; y<sy+2S6+face(mj.cnose; y+-2)
for (x'-15; x<l5+face(mJ.dx; x+-2)(

crayr((x-l4)/2j((y-285)/2] (double) brpixel(x,y)/255;

fc2(crayr,l+(x.14)/2l1+(y-285)/2);
save fft(2);

printfQ'\n calculating fft for window 4.");
clear-crayo; /* internal features *
for (y-sy+256; y~sy+256+face(mi.cmouth; y+-2)

for (x-140; x<140+facelm).reye; x+-2) (
crayr[(x-139)/21 ((y-285)/2j -(double) brpixel(x,y)/255;

ft2(crayr. l+(x-139)/2, l+(y-285)/2);
save EL(3)

printf("\n calculating fft for window 5.");
clear -crayo; /* left internal features *
for (y-sy+256; y<sy+256+face(m).cmouth; y+-2)

for (x-270; x<270+face(ml.dx/2; x+-2)
crayr[(x-269)/2) ((y-285)/2] - (double) brpixel(x,y)/255;

ft2(crayr,l+(x-269)/2l1+(y-285)/2);
save EL t(4);

printf("\n calculating fft for window 6.");
clear Crayo; 1* bottom half: tnose to chin *
for (y-sy+256; y<sy+256+face(ml.dy; y+-2)

for (x-400; x<400+facemj.dx; x+-2)(
crayr((x-399)/2] ((y-285)/2] - (double) brpixel(x,y)/255;

ft2(crayr, l+(x-399)/2, l+(y-285)/2);
save Lft(5);

return;

135

savefct(index)
inc index;

inc x,y;

ilisc(O).Eeature(indexl(O)(OI sinaray(OH[O);
ilisc(Ol.featureiindexi(OJlil - sinaray(0J[1j;
ilisciOI.feature(indexI(OJ(2J sinaray(Oj(21;
ilisc(Ol.feacure(index)(0)(3) cosaray(Oj(lJ;
ilisc(0).Ee.,ture~index) 101(4) -cosaray(0) 121;
ilist(O).feacure(index)(l1)(0 - sinarayllii 0);
ilisc(0J.feature(index)(l1)(1) sinaray(l)(1);
ilist(01.feature(indeKJ(l1(2) - sinaray(.) (21;
ilisc(O1.feature(indexi~l)(3! cosaray(l)(11;
£lisc(O).feature(index)(114) - cosaray(l)(2);
ilisc(0).feature(index)(2)(O) - sinaray(2) 101;
ilisc(01.Eeature(index)(2)1) - sinaray(21(lJ;
ilisc(01.festure(index)(21 (21 - casaray(2J (01;
ilist(01.feature(ifldexI(2)(3) - cosaray(2)(1J;
ilist(01.feature(index)(21(4) - cosaray(2)(2);
ilisc(0J.feature(index1(31(0) - sinaray(3J(01;
List(0).festure(indox)(3)11 - sinaray[3J 11.1;
Llist(01.festure(index)(3J(2) cosaray(31[01;
ilist(0J.festure(index)(31(31 - cosaray[3)11;
ilist(0).feature(index)[3)(4) - cosaray(3)(2);
ilistl0).foaturelindex)[41(O1 - sinaray(4)(0);
ilisc(0I.feature(index)(4)1 - sinaray(4)(1);
ilist(01.festure(indexI (4) (21 - cosaray(4](O);
ilist(01.feature(indexl(4)(3) - cosaray(4)1);
iJlist(O).feature['&ndexI(4)f4) - cosaray(4)(2);

return;

clear cray()

int x,y;

for (y-0; y<200; y4-+)
for (x-0; x.<200; x++)

crayrfxj~yl - 0.0;
return;

136

fc2(raray. fx, fty)

double raray(2OOJ(20OJ;

for (k-.0; W<: k++)
for (1w.0, 1<3; l.++)

cosaray(k)(11- 0.0;
sinaraiy(k)(1) - 0.0;
for (i-0O: L<Ercx; L++)

for (j-0;, j<fcy; j++)
cos~iray(k)(1) +- raraiy(i)(jJ * cos(.i*(k-2)*2*pi/fcx.j*(1.2)*2*pi/fcy):
sinaray(k)(1) +- raraylil(j) * sin(.L*(k-2)*2*pi/frx-j*(1-2)*2*pi/fty);

I

recurn;

137

Bibliography

Bush, Larry F. The Design of an Optimum Alphanumeric Symbol
Set for Cockpit Displays, MS Thesis AFIT/GE/ENG/77-11.
School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1977
(AD-A053447).

Darnell, Peter A. and Phillip E. Margolis. Software
Fnqineering in C. New York: Springer-Verlag, 1988.

Fretheim, Erik J. Computer Program. Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, Summer 1988.

Fretheim, Erik J. Personal Interview. Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, May 1989.

Gonzalez, Rafael C. and Paul Wintz. Diqital Signal
Poeing. Reading MA: Addison-Wesley Publishing
Company, 1977.

Kabrisky, Matthew, Director Signal Processing Laboratory.
Personal Interview. Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, July 1989.

Kernighan, Brian W. and P. J. Plauger. The Elements of
Programming Style (Second Edition). New York: McGraw
Hill Book Company, 1978.

Lambert, Larry C. Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine, MS Thesis
AFIT/GE/ENG/87D-35. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987 (AD-AI88819).

O'Hair, Mark A. Whole Word Rqcomnition Based on Low Freg
Fourier Complex and Amplitude Spectra, MS Thesis
AFIT/GEO/ENG/84D-4. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1984.

O'Hair, Mark A. Computer Program. Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, August 1989.

Pressman, Roger S. Software Engineering: A Practitioner's
Approach (Second Edition). New York: McGraw-Hill Book
Company, 1982.

138

Routh, Richard L. £g9rtqal Thought Theory: A Working Mdel
of the Human Gestalt Mechanism, Ph.D. Dissertation
AFIT/DS/EE/85-1. Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, July 1985 (AD-Al63215).

Russel, Robert L. Jr. Performance of a Working Face
Recognition Machine Using Cortical Thought Theory,

MS Thesis AFIT/GE/ENG/85D-37. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1985 (AD-A167781).

Sander, David D. Enhanced Autonomous Face Recognition
Machine, MS Thbsis AFIT/GCS/ENG/88D-19. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988 (AD-BI28376L).

Smith, Edward J. Development of an Autonomous Face
Regognition Machine, MS Thesis AFIT/GE/ENG/86D-36.

School of ENgineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1986
(AD-A178852).

Wahl, Friedrich M. Digital Image Signal Processing. Boston:
Artech House, 1987.

139

Vita

Captain Barbara C. Robb

She attended the Illinois Institute of

Technology and received the degree of Bachelor of Science in

Computer Science in May 1975. She worked as a civilian in

the computer field for seven years. She was commissioned in

June 1983 after attending Officer Training School. She then

attended the Air Force Institute of Technology as part of

the conversion program, receiving the degree of Bachelor of

Science in Electrical Engineering in March 1985. Next, she

served as a Project officer for the Secretary of the Air

Force Special Projects at Los Angeles AFB California until

entering the School of Engineering, Air Force Institute of

Technology in May 1988.

140

UtCLSSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMONo.070oi0'e

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

i0)rNT.4C:TfTrF i

2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIIUTIONIAVAILAIILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/EN

6c. ADDRESS (City, State. and ZIPCo*e) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

1a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK . WORK UNIT
ELEMENT NO. NO. NO, ACCESSION NO.

11. TITLE (Include Security Classfiation)

AUTONOMOUS FACE RECOGNITION MACHINE USING A FOURIER FEATURE SET

12. PERSONAL AUTHOR(S)
Barbara C. Robb, B.S., Capt, USAF

134. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YearMonth, Day) 15. PAGE COUNT
MS Thesis I FROM TO 1989 December 148

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on rovotre If ncesnaty and identity by block number)

FIELD GROUP I SUB.GROUP1,2 09,01 Pattern Recognition Face
06 04 Discrete Fourier Transforms Face Recognition

19. ABSTRACT (Continue on reverse if necessry and identify by block number)

Thesis Advisor: Matthew Kabrisky, PhD
Professor of Electrical Engineering

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
R]UNCLASSIFIEDrONLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Matthew Fabriskv. PhD (I14 99-g7#7 AFTTP/PN

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

This thesis demonstrates ourier coefficients as a reliable

feature set for face recognition, using the Autonomous Face

Recognition Machine developed at AFIT over the past several

years (Routh, 1985; Russel, 1985; Smith, 1986; Lambert, 1987;

Sander, 1986).

The Fourier transform portion of the system was examined

and improved. The code was made more efficient. Two Fourier

Fourier transform) were tested and compared. A voting scheme

was incorporated for examining multiple looks at test faces.

To further demonstrate performance, the number of faces in the

data base was doubled.

Recognition scores of up to 87% were achieved, compared to

63% for Sander's process with Fourier coefficients as a

feature set and 67% for Lambert's process with a center-of-

mass feature set. (Sander, 1988:32).

This thesis includes complete system documentation, to

assist those doing further research in this area.

UNCLASSIFIED

